Question
Question: If A = \(\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right...
If A = (cos120−cos360)(sin960+sin240) and B = (sin600−sin120)(cos480−cos720), then what is the value of BA?
A. −1 B. 0 C. 1 D. 2
Solution
Hint- Here, we will proceed by using the formulas sin(900+θ)=cosθ, cos(A+B)=cosAcosB−sinAsinB and cos(A−B)=cosAcosB+sinAsinB in order to simplify the expression BA.
Complete step-by-step answer:
Given, A = (cos120−cos360)(sin960+sin240) and B = (sin600−sin120)(cos480−cos720)
The expression whose value is needed can be obtained by dividing A by B as shown under BA=(sin600−sin120)(cos480−cos720)(cos120−cos360)(sin960+sin240) ⇒BA=(sin600−sin120)[cos(600−120)−cos(600+120)](cos120−cos360)[sin(900+60)+sin240] →(1)
Using the formula sin(900+θ)=cosθ, we can write
sin(900+60)=cos60 →(2)
As we know that cos(A+B)=cosAcosB−sinAsinB and cos(A−B)=cosAcosB+sinAsinB
Using the above formulas, we can write
cos(600+120)=cos600cos120−sin600sin120 →(3) and cos(600−120)=cos600cos120+sin600sin120 →(4)
By subtracting equation (3) from equation (4), we get
⇒cos(600−120)−cos(600+120)=cos600cos120+sin600sin120−(cos600cos120−sin600sin120) ⇒cos(600−120)−cos(600+120)=cos600cos120+sin600sin120−cos600cos120+sin600sin120 ⇒cos(600−120)−cos(600+120)=2sin600sin120 →(5)
By substituting equations (2) and (5) in equation (1), we have
⇒BA=(sin600−sin120)[2sin600sin120](cos120−cos360)[cos60+sin240] ⇒BA=(sin600−sin120)[2sin600sin120](cos120−cos360)[cos60+sin(900−660)] →(6)
Using the formula sin(900−θ)=cosθ, we can write
sin(900−660)=cos660 →(7)
By substituting equation (7) in equation (6), we get
⇒BA=(sin600−sin120)[2sin600sin120](cos120−cos360)[cos60+cos660] →(8)
Using the formulas cosA+cosB=2cos(2A+B)cos(2A−B), cosA−cosB=−2sin(2A+B)sin(2A−B) and sinA−sinB=2cos(2A+B)sin(2A−B) , we can write
⇒cos60+cos660=2cos(260+660)cos(260−660) ⇒cos60+cos660=2cos(2720)cos(2−600) ⇒cos60+cos660=2cos360cos(−300)
Since, cos(−θ)=cosθ
⇒cos60+cos660=2cos360cos300 →(9)
Similarly,
cos120−cos360=−2sin(2120+360)sin(2120−360) ⇒cos120−cos360=−2sin(2480)sin(2−240) ⇒cos120−cos360=−2sin240sin(−120)
Using the formula sin(−θ)=−sinθ in the above equation, we get
⇒cos120−cos360=2sin240sin120 →(10)
Similarly,
sin600−sin120=2cos(2600+120)sin(2600−120) ⇒sin600−sin120=2cos(2720)sin(2480) ⇒sin600−sin120=2cos360sin240 →(11)
By substituting equations (9), (10) and (11) in equation (8), we get
Using sin600=23 and cos300=23 in the above equation, we get
⇒BA=(23)(23) ⇒BA=1
Therefore, the value of BA is equal to 1.
Hence, option C is correct.
Note- In this particular problem, all the unknown angles in the expression BA (which are not available in the general trigonometric table) needs to be removed so that the final expression for BA is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.