Solveeit Logo

Question

Question: If A = \(\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right...

If A = (cos120cos360)(sin960+sin240)\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right) and B = (sin600sin120)(cos480cos720)\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right), then what is the value of AB\dfrac{{\text{A}}}{{\text{B}}}?
A. 1 B. 0 C. 1 D. 2  {\text{A}}{\text{. }} - 1 \\\ {\text{B}}{\text{. 0}} \\\ {\text{C}}{\text{. 1}} \\\ {\text{D}}{\text{. 2}} \\\

Explanation

Solution

Hint- Here, we will proceed by using the formulas sin(900+θ)=cosθ\sin \left( {{{90}^0} + \theta } \right) = \cos \theta , cos(A+B)=cosAcosBsinAsinB\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}} and cos(AB)=cosAcosB+sinAsinB\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}} in order to simplify the expression AB\dfrac{{\text{A}}}{{\text{B}}}.

Complete step-by-step answer:
Given, A = (cos120cos360)(sin960+sin240)\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right) and B = (sin600sin120)(cos480cos720)\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)
The expression whose value is needed can be obtained by dividing A by B as shown under AB=(cos120cos360)(sin960+sin240)(sin600sin120)(cos480cos720) AB=(cos120cos360)[sin(900+60)+sin240](sin600sin120)[cos(600120)cos(600+120)] (1)  \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)}} \\\ \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\sin \left( {{{90}^0} + {6^0}} \right) + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {\cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right)} \right]}}{\text{ }} \to {\text{(1)}} \\\
Using the formula sin(900+θ)=cosθ\sin \left( {{{90}^0} + \theta } \right) = \cos \theta , we can write
sin(900+60)=cos60 (2)\sin \left( {{{90}^0} + {6^0}} \right) = \cos {6^0}{\text{ }} \to {\text{(2)}}
As we know that cos(A+B)=cosAcosBsinAsinB\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}} and cos(AB)=cosAcosB+sinAsinB\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}
Using the above formulas, we can write
cos(600+120)=cos600cos120sin600sin120 (3)\cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} - \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(3)}} and cos(600120)=cos600cos120+sin600sin120 (4)\cos \left( {{{60}^0} - {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(4)}}
By subtracting equation (3) from equation (4), we get
cos(600120)cos(600+120)=cos600cos120+sin600sin120(cos600cos120sin600sin120) cos(600120)cos(600+120)=cos600cos120+sin600sin120cos600cos120+sin600sin120 cos(600120)cos(600+120)=2sin600sin120 (5)  \Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \left( {\cos {{60}^0}\cos {{12}^0} - \sin {{60}^0}\sin {{12}^0}} \right) \\\ \Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} \\\ \Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = 2\sin {60^0}\sin {12^0}{\text{ }} \to {\text{(5)}} \\\
By substituting equations (2) and (5) in equation (1), we have
AB=(cos120cos360)[cos60+sin240](sin600sin120)[2sin600sin120] AB=(cos120cos360)[cos60+sin(900660)](sin600sin120)[2sin600sin120] (6)  \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\\ \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin \left( {{{90}^0} - {{66}^0}} \right)} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(6)}} \\\
Using the formula sin(900θ)=cosθ\sin \left( {{{90}^0} - \theta } \right) = \cos \theta , we can write
sin(900660)=cos660 (7)\sin \left( {{{90}^0} - {{66}^0}} \right) = \cos {66^0}{\text{ }} \to {\text{(7)}}
By substituting equation (7) in equation (6), we get
AB=(cos120cos360)[cos60+cos660](sin600sin120)[2sin600sin120] (8) \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \cos {{66}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(8)}}
Using the formulas cosA+cosB=2cos(A+B2)cos(AB2)\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right), cosAcosB=2sin(A+B2)sin(AB2)\cos {\text{A}} - \cos {\text{B}} = - 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) and sinAsinB=2cos(A+B2)sin(AB2)\sin {\text{A}} - \sin {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) , we can write
cos60+cos660=2cos(60+6602)cos(606602) cos60+cos660=2cos(7202)cos(6002) cos60+cos660=2cos360cos(300)  \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{6^0} + {{66}^0}}}{2}} \right)\cos \left( {\dfrac{{{6^0} - {{66}^0}}}{2}} \right) \\\ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\cos \left( {\dfrac{{ - {{60}^0}}}{2}} \right) \\\ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos \left( { - {{30}^0}} \right) \\\
Since, cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta
cos60+cos660=2cos360cos300 (9)\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos {30^0}{\text{ }} \to {\text{(9)}}
Similarly,
cos120cos360=2sin(120+3602)sin(1203602) cos120cos360=2sin(4802)sin(2402) cos120cos360=2sin240sin(120)  \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{12}^0} + {{36}^0}}}{2}} \right)\sin \left( {\dfrac{{{{12}^0} - {{36}^0}}}{2}} \right) \\\ \Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{48}^0}}}{2}} \right)\sin \left( {\dfrac{{ - {{24}^0}}}{2}} \right) \\\ \Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin {24^0}\sin \left( { - {{12}^0}} \right) \\\
Using the formula sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta in the above equation, we get
cos120cos360=2sin240sin120 (10)\Rightarrow \cos {12^0} - \cos {36^0} = 2\sin {24^0}\sin {12^0}{\text{ }} \to {\text{(10)}}
Similarly,
sin600sin120=2cos(600+1202)sin(6001202) sin600sin120=2cos(7202)sin(4802) sin600sin120=2cos360sin240 (11)  \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{60}^0} + {{12}^0}}}{2}} \right)\sin \left( {\dfrac{{{{60}^0} - {{12}^0}}}{2}} \right) \\\ \Rightarrow \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{48}^0}}}{2}} \right) \\\ \Rightarrow \sin {60^0} - \sin {12^0} = 2\cos {36^0}\sin {24^0}{\text{ }} \to {\text{(11)}} \\\
By substituting equations (9), (10) and (11) in equation (8), we get

AB=(2sin240sin120)[2cos360cos300](2cos360sin240)[2sin600sin120] AB=cos300sin600  \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {2\sin {{24}^0}\sin {{12}^0}} \right)\left[ {2\cos {{36}^0}\cos {{30}^0}} \right]}}{{\left( {2\cos {{36}^0}\sin {{24}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\\ \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\cos {{30}^0}}}{{\sin {{60}^0}}} \\\

Using sin600=32\sin {60^0} = \dfrac{{\sqrt 3 }}{2} and cos300=32\cos {30^0} = \dfrac{{\sqrt 3 }}{2} in the above equation, we get
AB=(32)(32) AB=1  \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\\ \Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = 1 \\\
Therefore, the value of AB\dfrac{{\text{A}}}{{\text{B}}} is equal to 1.
Hence, option C is correct.

Note- In this particular problem, all the unknown angles in the expression AB\dfrac{{\text{A}}}{{\text{B}}} (which are not available in the general trigonometric table) needs to be removed so that the final expression for AB\dfrac{{\text{A}}}{{\text{B}}} is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.