Question
Question: If \|A\| = \(\left| \begin{matrix} a & b & c \\ x & y & z \\ p & q & r \end{matrix} \right|\) & \|B\...
If |A| = axpbyqczr & |B| = $\left| \begin{matrix} q & - b & y \
- p & a & - x \ r & - c & z \end{matrix} \right|$
A
|A| = 2|B|
B
|A| = |B|
C
|A| = –|B|
D
None
Answer
|A| = –|B|
Explanation
Solution
$\left| \begin{matrix} q & - p & r \
- b & a & - c \ y & - x & z \end{matrix} \right|=–\left| \begin{matrix}
- p & q & r \ a & - b & - c \
- x & y & z \end{matrix} \right|$
= – $\left| \begin{matrix} a & - b & - c \
- x & y & z \
- p & q & r \end{matrix} \right|=–(–1)\left| \begin{matrix}
- a & b & c \
- x & y & z \
- p & q & r \end{matrix} \right|$
= –axpbyqczr = –|A|