Question
Question: If \[A=\left[ \begin{matrix} \cos \theta & -\sin \theta \\\ \sin \theta & \cos \theta \\\ ...
If A=cosθ sinθ −sinθcosθ, then the matrix A−50 when θ=12π , is equal to
(a) 23 −21 2123
(b) 21 −23 −2321
(c) 21 23 −2321
(d) 23 21 −2123
Explanation
Solution
Hint: First try to find A−1 using formula if A=a c bd then adj(A)=d −c −ba and
A−1=(ad−bc)1adj(A) after that find A−2 , then A−3. Then find any pattern they are following after generalize the value of A−50 using identities like cos(4π+θ)=cosθ and
sin(4π+θ)=sinθ to get the desired result.
Complete step-by-step answer:
In the equation we are given,