Solveeit Logo

Question

Question: If \(A=\left[ \begin{matrix} \cos 2\theta & -\sin 2\theta \\\ \sin 2\theta & \cos 2\theta ...

If A=[cos2θsin2θ sin2θcos2θ ]A=\left[ \begin{matrix} \cos 2\theta & -\sin 2\theta \\\ \sin 2\theta & \cos 2\theta \\\ \end{matrix} \right] and A+AT=IA+{{A}^{T}}=I then find the value of θ\theta . $$$$

Explanation

Solution

**Hint:** We find ${{A}^{T}}$ by replacing the entices as ${{a}_{ji}}={{a}_{ij}}$. We put $A,{{A}^{T}}$ and the second order identity matrix $I=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]$ in the given equation. We add $A,{{A}^{T}}$. We use the condition of equality and equate respective elements from both matrices at left and right hand side. We get an equation in cosine which we solve to the value of $\theta $.

Complete step by step answer:
We know the transpose of a matrix AA with mm rows and nn columns (order m×nm\times n) is matrix denoted as AT{{A}^{T}} with nn rows and mm column(order n×mn\times m). If the entries of A are denoted as aij{{a}_{ij}} where i=1,2,...,mi=1,2,...,m is the row position of the entry and j=1,2,...,nj=1,2,...,n is the column position of the entry then entries of AT{{A}^{T}} are given as aji{{a}_{ji}} with jj as the row position and ii as column position. The identity matrix II is the square matrix with say number of rows and columns nn (order n×nn\times n) then the entries of II is aij=1{{a}_{ij}}=1 if i=ji=j otherwise aij=0{{a}_{ij}}=0. Two matrices. The matrices AA and BB with entries bij{{b}_{ij}}are equal if and only if they are of same order and aij=bij{{a}_{ij}}={{b}_{ij}}. Two matrices AA and BB can be added when they are of same order and the entries of sum matrix is {{a}_{ij}}+{{b}_{ij}}$$$$$ The given matrix is square matrix of order 2\times 2whichiswhich isA=\left[ \begin{matrix}
\cos 2\theta & -\sin 2\theta \\
\sin 2\theta & \cos 2\theta \\
\end{matrix} \right].Thenitstransposeis. Then its transpose is{{A}^{T}}=\left[ \begin{matrix}
\cos 2\theta & \sin 2\theta \\
-\sin 2\theta & \cos 2\theta \\
\end{matrix} \right].Theidentitymatrixoforder. The identity matrix of order2\times 2isis\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$. We put these matrices in given equation of matrices which is,

& A+{{A}^{T}}=I \\\ & \Rightarrow \left[ \begin{matrix} \cos 2\theta & -\sin 2\theta \\\ \sin 2\theta & \cos 2\theta \\\ \end{matrix} \right]+\left[ \begin{matrix} \cos 2\theta & \sin 2\theta \\\ -\sin 2\theta & \cos 2\theta \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] \\\ \end{aligned}$$ We add the respective elements and get $$\Rightarrow \left[ \begin{matrix} 2\cos 2\theta & 0 \\\ 0 & 2\cos 2\theta \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]$$ We use the condition of equality between matrices and equate respective elements to get the equation $$\begin{aligned} & 2\cos 2\theta =1 \\\ & \Rightarrow \cos 2\theta =\dfrac{1}{2} \\\ & \Rightarrow \cos 2\theta =\cos \left( \dfrac{\pi }{3} \right) \\\ \end{aligned}$$ We know that the solutions of the equation $\cos x=\cos \alpha $ are $x=2n\pi \pm \alpha $ where $n$ is an integer. Here we have $x=2\theta ,\alpha =\dfrac{\pi }{3}$ in the equation $\cos 2\theta =1$. So we have, $$\begin{aligned} & \cos 2\theta =\cos \left( \dfrac{\pi }{3} \right) \\\ & \Rightarrow 2\theta =2n\pi \pm \dfrac{\pi }{3} \\\ & \Rightarrow \theta =n\pi \pm \dfrac{\pi }{3} \\\ \end{aligned}$$ So the values of $\theta $ are $n\pi \pm \dfrac{\pi }{3}$ where $n$ is any integer. $$$$ **Note:** We note that we could add and compare matrices because they were of the same order. We also note the determinant values of $A,{{A}^{T}}$ are equal. We should care of the confusion between solution of $\cos x=\cos \alpha $ from $\sin x=\sin \alpha $ which has solutions $x=n\pi +{{\left( -1 \right)}^{n}}\alpha.$