Solveeit Logo

Question

Question: If \(A=\left[ \begin{matrix} 5 & 8 & 1 \\\ 0 & 2 & 1 \\\ 4 & 3 & -1 \\\ \end{matrix...

If A=[581 021 431 ], B=[2 1 3 ]A=\left[ \begin{matrix} 5 & 8 & 1 \\\ 0 & 2 & 1 \\\ 4 & 3 & -1 \\\ \end{matrix} \right],\ B=\left[ \begin{matrix} 2 \\\ -1 \\\ 3 \\\ \end{matrix} \right] and AX = B, then find X.

Explanation

Solution

Hint: Use simple matrix multiplication to understand the relation given to us in the question. Then, use the formula for calculating the inverse of a given matrix, to calculate the matrix X. This is because, if we multiply A1{{A}^{-1}} on both sides, then the LHS becomes only X, and further calculation will get us the answer.

Complete step-by-step answer:

Given to us is the equation AX = B.
Let’s multiply both sides by A1{{A}^{-1}}.
A1AX=A1B IX=A1B                      (Since A.A1=A1A=I) X=A1B \begin{aligned} & \Rightarrow {{A}^{-1}}AX={{A}^{-1}}B \\\ & \Rightarrow IX={{A}^{-1}}B\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{Since }A.{{A}^{-1}}={{A}^{-1}}A=I \right) \\\ & \Rightarrow X={{A}^{-1}}B \\\ \end{aligned}
We can find the matrix A1{{A}^{-1}} by using the formula A1=adjAA{{A}^{-1}}=\dfrac{adjA}{\left| A \right|}.
To find the adjoint of a matrix, first find the cofactor matrix of the given matrix. Then find the transpose of the cofactor matrix.
Cofactor of 5  = A11=21 31 =5\text{ = }{{\text{A}}_{11}}=\left| \begin{matrix} 2 & 1 \\\ 3 & -1 \\\ \end{matrix} \right|=-5
Cofactor of 8 A12=01 41 =4\text{= }{{\text{A}}_{12}}=-\left| \begin{matrix} 0 & 1 \\\ 4 & -1 \\\ \end{matrix} \right|=4
Cofactor of 1  = A13=02 43 =8\text{ = }{{\text{A}}_{13}}=\left| \begin{matrix} 0 & 2 \\\ 4 & 3 \\\ \end{matrix} \right|=-8
Cofactor of 0 A21=81 31 =11\text{= }{{\text{A}}_{21}}=-\left| \begin{matrix} 8 & 1 \\\ 3 & -1 \\\ \end{matrix} \right|=11
Cofactor of 2 A22=51 41 =9\text{= }{{\text{A}}_{22}}=\left| \begin{matrix} 5 & 1 \\\ 4 & -1 \\\ \end{matrix} \right|=-9
Cofactor of 1 A23=58 43 =17\text{= }{{\text{A}}_{23}}=-\left| \begin{matrix} 5 & 8 \\\ 4 & 3 \\\ \end{matrix} \right|=17
Cofactor of 4 A31=81 21 =6\text{= }{{\text{A}}_{31}}=\left| \begin{matrix} 8 & 1 \\\ 2 & 1 \\\ \end{matrix} \right|=6
Cofactor of 3 A32=51 01 =5\text{= }{{\text{A}}_{32}}=-\left| \begin{matrix} 5 & 1 \\\ 0 & 1 \\\ \end{matrix} \right|=-5
Cofactor of -1 A33=58 02 =10\text{= }{{\text{A}}_{33}}=\left| \begin{matrix} 5 & 8 \\\ 0 & 2 \\\ \end{matrix} \right|=10
So, the cofactor matrix of A is [548 11917 6510 ]\left[ \begin{matrix} -5 & 4 & -8 \\\ 11 & -9 & 17 \\\ 6 & -5 & 10 \\\ \end{matrix} \right] .
Now, the adjoint of matrix A is the transpose of the cofactor matrix of A, which is given as [5116 495 81710 ]\left[ \begin{matrix} -5 & 11 & 6 \\\ 4 & -9 & -5 \\\ -8 & 17 & 10 \\\ \end{matrix} \right] .
Now, the determinant of matrix A is given as A=581 021 431 \left| A \right|=\left| \begin{matrix} 5 & 8 & 1 \\\ 0 & 2 & 1 \\\ 4 & 3 & -1 \\\ \end{matrix} \right| .
=5(5)8(4)+1(8)=5\left( -5 \right)-8\left( -4 \right)+1\left( -8 \right)
=258+32=1=-25-8+32=-1
Now, we know the inverse of a matrix given by dividing the adjoint of the matrix by its determinant. So, the inverse of matrix A is given as A1=(adjA)A{{A}^{-1}}=\dfrac{\left( adjA \right)}{\left| A \right|} .
=[5116 495 81710 ]1=\dfrac{\left[ \begin{matrix} -5 & 11 & 6 \\\ 4 & -9 & -5 \\\ -8 & 17 & 10 \\\ \end{matrix} \right]}{-1}
=[5116 495 81710 ]=\left[ \begin{matrix} 5 & -11 & -6 \\\ -4 & 9 & 5 \\\ 8 & -17 & -10 \\\ \end{matrix} \right]
Now, we have X=A1BX={{A}^{-1}}B .
X=[5116 495 81710 ][2 1 3 ]\Rightarrow X=\left[ \begin{matrix} 5 & -11 & -6 \\\ -4 & 9 & 5 \\\ 8 & -17 & -10 \\\ \end{matrix} \right]\left[ \begin{matrix} 2 \\\ -1 \\\ 3 \\\ \end{matrix} \right]
X=[(5×2)+(11×(1))+(6×3) (4×2)+(9×(1))+(5×3) (8×2)+(17×(1))+(10×3) ]\Rightarrow X=\left[ \begin{matrix} \left( 5\times 2 \right)+\left( -11\times \left( -1 \right) \right)+\left( -6\times 3 \right) \\\ \left( -4\times 2 \right)+\left( 9\times \left( -1 \right) \right)+\left( 5\times 3 \right) \\\ \left( 8\times 2 \right)+\left( -17\times \left( -1 \right) \right)+\left( -10\times 3 \right) \\\ \end{matrix} \right]
X=[10+1118 89+15 16+1730 ]\Rightarrow X=\left[ \begin{matrix} 10+11-18 \\\ -8-9+15 \\\ 16+17-30 \\\ \end{matrix} \right]
X=[3 2 3 ]\Rightarrow X=\left[ \begin{matrix} 3 \\\ -2 \\\ 3 \\\ \end{matrix} \right]
Therefore, X=[3 2 3 ]X=\left[ \begin{matrix} 3 \\\ -2 \\\ 3 \\\ \end{matrix} \right].

Note: You can also find the inverse of the matrix by carrying out row or column transformations.
Be careful about the fact when (i + j) is odd in Aij{{A}_{ij}} the cofactor is the negative of the minor value of Aij{{A}_{ij}}.