Solveeit Logo

Question

Question: If \(A=\left[ \begin{matrix} 4 & 8 \\\ -2 & -4 \\\ \end{matrix} \right]\) then prove tha...

If A=[48 24 ]A=\left[ \begin{matrix} 4 & 8 \\\ -2 & -4 \\\ \end{matrix} \right] then prove that A2=0{{A}^{2}}=0 .

Explanation

Solution

At first, we need to find the square of the matrix A=[48 24 ]A=\left[ \begin{matrix} 4 & 8 \\\ -2 & -4 \\\ \end{matrix} \right] . The multiplication of two matrices of order 2×22\times 2 can be shown as,
[ab cd ][de fg ]=[ad+bfae+bg cd+dfce+dg ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right]\left[ \begin{matrix} d & e \\\ f & g \\\ \end{matrix} \right]=\left[ \begin{matrix} ad+bf & ae+bg \\\ cd+df & ce+dg \\\ \end{matrix} \right]
Similarly, the square of matrix A can also be found out. If the square turns out to be a zero matrix, then the required is proved.

Complete step by step answer:
The matrix that we are given in this problem is,
A=[48 24 ]A=\left[ \begin{matrix} 4 & 8 \\\ -2 & -4 \\\ \end{matrix} \right]
We have to prove that the square of the matrix is a zero matrix, or that A2=0{{A}^{2}}=0 . Now, in order to prove this, we need to find the value of the square of the matrix A. For that, we need to multiply the matrix A with itself. The matrix multiplication of two matrices of order 2×22\times 2 can be shown as,
[ab cd ][de fg ]=[ad+bfae+bg cd+dfce+dg ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right]\left[ \begin{matrix} d & e \\\ f & g \\\ \end{matrix} \right]=\left[ \begin{matrix} ad+bf & ae+bg \\\ cd+df & ce+dg \\\ \end{matrix} \right]
In the above way of multiplication, we can find out the multiplication of A with itself. The multiplication goes as,
A×A=[48 24 ][48 24 ]=[4×4+8(2)4×8+8(4) (2)4+(4)(2)(2)8+(4)(4) ]\Rightarrow A\times A=\left[ \begin{matrix} 4 & 8 \\\ -2 & -4 \\\ \end{matrix} \right]\left[ \begin{matrix} 4 & 8 \\\ -2 & -4 \\\ \end{matrix} \right]=\left[ \begin{matrix} 4\times 4+8\left( -2 \right) & 4\times 8+8\left( -4 \right) \\\ \left( -2 \right)4+\left( -4 \right)\left( -2 \right) & \left( -2 \right)8+\left( -4 \right)\left( -4 \right) \\\ \end{matrix} \right]
Simplifying the above matric by necessary addition and subtractions in the element spaces, we can write it as,
A2=[00 00 ]\Rightarrow {{A}^{2}}=\left[ \begin{matrix} 0 & 0 \\\ 0 & 0 \\\ \end{matrix} \right]
Now, we know that the zero matrix [00 00 ]\left[ \begin{matrix} 0 & 0 \\\ 0 & 0 \\\ \end{matrix} \right] can also be shown as 00 for a representation.
Thus, we can conclude that A2=0{{A}^{2}}=0 .

Note: There are various types of matrices. Out of them, the matrix whose square is a zero matrix is called a nilpotent matrix. For a nilpotent matrix,
A2=0 A1.A2=A1.0 A=0 \begin{aligned} & {{A}^{2}}=0 \\\ & \Rightarrow {{A}^{-1}}.{{A}^{2}}={{A}^{-1}}.0 \\\ & \therefore A=0 \\\ \end{aligned}
But this is not true for this case. This means multiplication of A1{{A}^{-1}} is not feasible or that it is undefined. This only means that A=0\left| A \right|=0 . A=4(4)8(2)=0\left| A \right|=4\left( -4 \right)-8\left( -2 \right)=0 which is true. So, we can also prove this way.