Solveeit Logo

Question

Question: If \(A=\left[ \begin{matrix} -4 & -1 \\\ 3 & 1 \\\ \end{matrix} \right]\) , then the det...

If A=[41 31 ]A=\left[ \begin{matrix} -4 & -1 \\\ 3 & 1 \\\ \end{matrix} \right] , then the determinant of the matrix A20162A2015A2014{{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}} is
A. 20142014
B. 20162016
C. 175-175
D. 25-25

Explanation

Solution

At first, we have to take A2014{{A}^{2014}} common from the expression and get A2014(A22AI){{A}^{2014}}\left( {{A}^{2}}-2A-I \right) . After that, we find the value of the determinant A\left| A \right| and find the value of the matrix A22AI{{A}^{2}}-2A-I which come out to be 1-1 and [205 155 ]\left[ \begin{matrix} 20 & 5 \\\ -15 & -5 \\\ \end{matrix} \right] respectively. The value of the determinant A22AI\left| {{A}^{2}}-2A-I \right| will then be 25-25 . We then apply the property AB=AB\left| AB \right|=\left| A \right|\left| B \right| to A2014(A22AI)\left| {{A}^{2014}}\left( {{A}^{2}}-2A-I \right) \right| and get A2014A22AI\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right| . Again, we apply the property An=An\left| {{A}^{n}} \right|={{\left| A \right|}^{n}} and get the value of A2014A22AI=A2014A22AI\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|={{\left| A \right|}^{2014}}\left| {{A}^{2}}-2A-I \right| .

Complete step by step answer:
The matrix that we are given in this problem is,
A=[41 31 ]A=\left[ \begin{matrix} -4 & -1 \\\ 3 & 1 \\\ \end{matrix} \right]
We know that for a 2×22\times 2 matrix say [ab cd ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right] , its determinant will be ab cd =adbc\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=ad-bc . Applying this to the given matrix, we get,
A=41 31 =(4)×1(1)×3=4+3 A=1....(i) \begin{aligned} & \Rightarrow \left| A \right|=\left| \begin{matrix} -4 & -1 \\\ 3 & 1 \\\ \end{matrix} \right|=\left( -4 \right)\times 1-\left( -1 \right)\times 3=-4+3 \\\ & \Rightarrow \left| A \right|=-1....\left( i \right) \\\ \end{aligned}
The matrix that we need to evaluate is,
A20162A2015A2014{{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}}
After taking A2014{{A}^{2014}} common from the expression, this matrix can be rewritten as,
A2014(A22AI)\Rightarrow {{A}^{2014}}\left( {{A}^{2}}-2A-I \right)
The determinant of the matrix will then be,
A2014(A22AI)\Rightarrow \left| {{A}^{2014}}\left( {{A}^{2}}-2A-I \right) \right|
Now, we know the property of determinant which says that AB=AB\left| AB \right|=\left| A \right|\left| B \right| . Applying this to the above determinant, the above determinant thus becomes,
A2014A22AI\Rightarrow \left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|
Now, we need to find the value of the matrix A22AI{{A}^{2}}-2A-I and then find out its determinant. The matrix will be,
A22AI=[41 31 ][41 31 ]2[41 31 ][10 01 ] A22AI=[16341 12+33+1 ][82 62 ][10 01 ] A22AI=[205 155 ] \begin{aligned} & \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix} -4 & -1 \\\ 3 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} -4 & -1 \\\ 3 & 1 \\\ \end{matrix} \right]-2\left[ \begin{matrix} -4 & -1 \\\ 3 & 1 \\\ \end{matrix} \right]-\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix} 16-3 & 4-1 \\\ -12+3 & -3+1 \\\ \end{matrix} \right]-\left[ \begin{matrix} -8 & -2 \\\ 6 & 2 \\\ \end{matrix} \right]-\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix} 20 & 5 \\\ -15 & -5 \\\ \end{matrix} \right] \\\ \end{aligned}
The determinant of this matrix will then be,
A22AI=205 155 =20(5)5(15) A22AI=25....(ii) \begin{aligned} & \Rightarrow \left| {{A}^{2}}-2A-I \right|=\left| \begin{matrix} 20 & 5 \\\ -15 & -5 \\\ \end{matrix} \right|=20\left( -5 \right)-5\left( -15 \right) \\\ & \Rightarrow \left| {{A}^{2}}-2A-I \right|=-25....\left( ii \right) \\\ \end{aligned}
We know the property of the determinant which says that the determinant of a matrix which is raised to a power is equal to the determinant being raised to the same power. This means,
A2014=A2014\Rightarrow \left| {{A}^{2014}} \right|={{\left| A \right|}^{2014}}
The value of the determinant A2014A22A1\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-1 \right| thus becomes,
A2014A22A1=(1)2014×(25)=25\Rightarrow \left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-1 \right|={{\left( -1 \right)}^{2014}}\times \left( -25 \right)=-25
Thus, we can conclude that the value of the determinant will be 25-25

So, the correct answer is “Option D”.

Note: In order to solve this problem, we must be accustomed with the various properties of matrices and determinants. Forgetting one important thing will make us unable to solve the problem. Also, we should avoid the common mistake of taking the determinant as A20162A2015A2014=A20162A2015A2014\left| {{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}} \right|=\left| {{A}^{2016}} \right|-2\left| {{A}^{2015}} \right|-\left| {{A}^{2014}} \right| .