Solveeit Logo

Question

Mathematics Question on Matrices

If A=[34 11 ],A=\left[ \begin{matrix} 3 & -4 \\\ 1 & -1 \\\ \end{matrix} \right], then (AA)(A-A') is equal to (where, AA' is transpose of matrix AA)

A

null matrix

B

identity matrix

C

symmetric

D

skew-symmetric

Answer

skew-symmetric

Explanation

Solution

The correct option is(D): skew-symmetric.

Given, A=[34 11 ]A=\left[ \begin{matrix} 3 & -4 \\\ 1 & -1 \\\ \end{matrix} \right]
Then, A=[31 41 ]A'=\left[ \begin{matrix} 3 & 1 \\\ -4 & -1 \\\ \end{matrix} \right]
Now, AA=[34 11 ][31 41 ]A-A'=\left[ \begin{matrix} 3 & -4 \\\ 1 & -1 \\\ \end{matrix} \right]-\left[ \begin{matrix} 3 & 1 \\\ -4 & -1 \\\ \end{matrix} \right]
\Rightarrow AA=[05 50 ]A-A'=\left[ \begin{matrix} 0 & -5 \\\ 5 & 0 \\\ \end{matrix} \right] .. (i)
Now, we have AA=[31 41 ][34 11 ]=[05 50 ]A'-A=\left[ \begin{matrix} 3 & 1 \\\ -4 & -1 \\\ \end{matrix} \right]-\left[ \begin{matrix} 3 & -4 \\\ 1 & -1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 5 \\\ -5 & 0 \\\ \end{matrix} \right]
\Rightarrow (AA)=[05 50 ]=(AA)(A'-A)'=\left[ \begin{matrix} 0 & -5 \\\ 5 & 0 \\\ \end{matrix} \right]=(A-A')
[From E (i)] which represent that (AA)(A-A') is skew-symmetric matrix.