Solveeit Logo

Question

Question: If \(A=\left[ \begin{matrix} 1 & 2 & 2 \\\ 2 & 1 & -2 \\\ a & 2 & b \\\ \end{matrix...

If A=[122 212 a2b ]A=\left[ \begin{matrix} 1 & 2 & 2 \\\ 2 & 1 & -2 \\\ a & 2 & b \\\ \end{matrix} \right] is a matrix satisfying the equation AAT=9IA{{A}^{T}}=9I where II is 3×33\times 3 identity matrix, then the ordered pair (a, b) is equal to
(a) (-2, -1)
(b) (-2, 1)
(c) (2, 1)
(d) (2, -1)

Explanation

Solution

Hint: Write the transpose of a matrix by interchanging the value of entries in each row and column. Multiply the matrix and is transpose using laws of matrix multiplication. Write the 3×33\times 3 identity matrix. Substitute the values given in the equation AAT=9IA{{A}^{T}}=9I and compare the terms on both sides to find the value of variables ‘a’ and ‘b’.

Complete step-by-step answer:
We have the matrix A=[122 212 a2b ]A=\left[ \begin{matrix} 1 & 2 & 2 \\\ 2 & 1 & -2 \\\ a & 2 & b \\\ \end{matrix} \right] such that AAT=9IA{{A}^{T}}=9I. We have to calculate the values of variables ‘a’ and ‘b’.

We will write the transpose of a given matrix by interchanging the value of entries in each row and column.
Thus, the transpose of the matrix A=[122 212 a2b ]A=\left[ \begin{matrix} 1 & 2 & 2 \\\ 2 & 1 & -2 \\\ a & 2 & b \\\ \end{matrix} \right] is AT=[12a 212 22b ]{{A}^{T}}=\left[ \begin{matrix} 1 & 2 & a \\\ 2 & 1 & 2 \\\ 2 & -2 & b \\\ \end{matrix} \right].
We will now multiply both the matrices using the law of matrix multiplication.
Let A=(aij)n×nA={{\left( {{a}_{ij}} \right)}_{n\times n}} and B=(bjk)n×nB={{\left( {{b}_{jk}} \right)}_{n\times n}} be two matrices. The product of two matrices is AB=(j=13aijbjk)ikAB={{\left( \sum\limits_{j=1}^{3}{{{a}_{ij}}{{b}_{jk}}} \right)}_{ik}}.
Thus, we have AAT=[1(1)+2(2)+2(2)1(2)+2(1)+2(2)1(a)+2(2)+2(b) 2(1)+1(2)2(2)2(2)+1(1)2(2)2(a)+1(2)2(b) a(1)+2(2)+2(b)a(2)+2(1)+b(2)a(a)+2(2)+b(b) ]A{{A}^{T}}=\left[ \begin{matrix} 1\left( 1 \right)+2\left( 2 \right)+2\left( 2 \right) & 1\left( 2 \right)+2\left( 1 \right)+2\left( -2 \right) & 1\left( a \right)+2\left( 2 \right)+2\left( b \right) \\\ 2\left( 1 \right)+1\left( 2 \right)-2\left( 2 \right) & 2\left( 2 \right)+1\left( 1 \right)-2\left( -2 \right) & 2\left( a \right)+1\left( 2 \right)-2\left( b \right) \\\ a\left( 1 \right)+2\left( 2 \right)+2\left( b \right) & a\left( 2 \right)+2\left( 1 \right)+b\left( -2 \right) & a\left( a \right)+2\left( 2 \right)+b\left( b \right) \\\ \end{matrix} \right].
Further simplifying the above expression, we have AAT=[90a+4+2b 092a+22b a+4+2b2a+22ba2+4+b2 ]A{{A}^{T}}=\left[ \begin{matrix} 9 & 0 & a+4+2b \\\ 0 & 9 & 2a+2-2b \\\ a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\\ \end{matrix} \right].
We know that AAT=9IA{{A}^{T}}=9I, where I is the 3×33\times 3 matrix. Thus, I=[100 010 001 ]I=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right].
So, we have AAT=9I=9[100 010 001 ]=[900 090 009 ]A{{A}^{T}}=9I=9\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 9 & 0 & 0 \\\ 0 & 9 & 0 \\\ 0 & 0 & 9 \\\ \end{matrix} \right].
We know that AAT=[90a+4+2b 092a+22b a+4+2b2a+22ba2+4+b2 ]A{{A}^{T}}=\left[ \begin{matrix} 9 & 0 & a+4+2b \\\ 0 & 9 & 2a+2-2b \\\ a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\\ \end{matrix} \right].
Thus, we have [90a+4+2b 092a+22b a+4+2b2a+22ba2+4+b2 ]=[900 090 009 ]\left[ \begin{matrix} 9 & 0 & a+4+2b \\\ 0 & 9 & 2a+2-2b \\\ a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 9 & 0 & 0 \\\ 0 & 9 & 0 \\\ 0 & 0 & 9 \\\ \end{matrix} \right].
Comparing each corresponding term in both the matrices, we have a+2b+4=0.....(1)a+2b+4=0.....\left( 1 \right) and 2a2b+2=0.....(2)2a-2b+2=0.....\left( 2 \right).
We will now solve these two linear equations by the elimination method.
Adding both the equations, we have (a+2b+4)+(2a2b+2)=0\left( a+2b+4 \right)+\left( 2a-2b+2 \right)=0.
Thus, we have 3a+6=03a+6=0.
Rearranging the terms, we have a=63=2.....(3)a=\dfrac{-6}{3}=-2.....\left( 3 \right).
Substituting equation (3) in equation (1), we have 2+2b+4=0-2+2b+4=0. Simplifying this equation, we have 2b+2=0b=22=12b+2=0\Rightarrow b=\dfrac{-2}{2}=-1.
Hence, we have (a,b)=(2,1)\left( a,b \right)=\left( -2,-1 \right), which is option (a).

Note: One must know the definition of the transpose of a matrix. We also need to keep in mind that matrix multiplication is not commutative, i.e., for any two matrices A and B, we have ABBAAB\ne BA. While multiplying two matrices, one must keep in mind that the number of columns of the first matrix must be equal to the number of rows of the second matrix.