Solveeit Logo

Question

Question: If \(A=\left[ \begin{matrix} 0 & 1 & 3 \\\ 1 & 2 & x \\\ 2 & 3 & 1 \\\ \end{matrix}...

If A=[013 12x 231 ]A=\left[ \begin{matrix} 0 & 1 & 3 \\\ 1 & 2 & x \\\ 2 & 3 & 1 \\\ \end{matrix} \right] and A1=[12452 12332 12y12 ]{{A}^{-1}}=\left[ \begin{matrix} \dfrac{1}{2} & -4 & \dfrac{5}{2} \\\ \dfrac{-1}{2} & 3 & \dfrac{-3}{2} \\\ \dfrac{1}{2} & y & \dfrac{1}{2} \\\ \end{matrix} \right], find xx and yy.

Explanation

Solution

To solve this question we need to have the knowledge of matrix and its properties. We will use the formula [A]1=1AAdj.[A]{{\left[ A \right]}^{-1}}=\dfrac{1}{\left| A \right|}\text{Adj}\text{.}\left[ A \right] , where Adj.\text{Adj}\text{.} is the Adjoint Matrix. The first step will be to find the minor matrix of the given matrix AA. The second step will be to find a cofactor factors matrix of AA, then we are supposed to find the Adjoint matrix and lastly find the determinant. Then we will equate the R.H.S of the formula with the given matrix [A]1{{\left[ A \right]}^{-1}} finding xx and yy.

Complete step by step answer:
The question ask us to find the value of xx and yywhenA=[013 12x 231 ]A=\left[ \begin{matrix} 0 & 1 & 3 \\\ 1 & 2 & x \\\ 2 & 3 & 1 \\\ \end{matrix} \right] and A1=[12452 12332 12y12 ]{{A}^{-1}}=\left[ \begin{matrix} \dfrac{1}{2} & -4 & \dfrac{5}{2} \\\ \dfrac{-1}{2} & 3 & \dfrac{-3}{2} \\\ \dfrac{1}{2} & y & \dfrac{1}{2} \\\ \end{matrix} \right].
The question will be solved using the formula [A]1=1AAdj.[A]{{\left[ A \right]}^{-1}}=\dfrac{1}{\left| A \right|}\text{Adj}\text{.}\left[ A \right]. We will find the R.H.S and then equate it to the given value of [A]1{{\left[ A \right]}^{-1}}. The first step in this process will be to find the Minor of matrix of AA , which is:
MA=[23x12x34 190602 x60301 ]{{M}_{A}}=\left[ \begin{matrix} 2-3x & 1-2x & 3-4 \\\ 1-9 & 0-6 & 0-2 \\\ x-6 & 0-3 & 0-1 \\\ \end{matrix} \right]
On solving the above matrix we get:
MA=[23x12x1 862 x631 ]{{M}_{A}}=\left[ \begin{matrix} 2-3x & 1-2x & -1 \\\ -8 & -6 & -2 \\\ x-6 & -3 & -1 \\\ \end{matrix} \right]
The second step is to find the cofactors matrix of AA which can be found using the below formula.
Cij=(1)i+jMijC_{ij}=(-1)^{i+j}M_{ij}
CA=[23x(12x)1 (8)6(2) x6(3)1 ]{{C}_{A}}=\left[ \begin{matrix} 2-3x & -\left( 1-2x \right) & -1 \\\ -\left( -8 \right) & -6 & -\left( -2 \right) \\\ x-6 & -\left( -3 \right) & -1 \\\ \end{matrix} \right]
On calculating the above expression we get:
CA=[23x2x11 862 x631 ]{{C}_{A}}=\left[ \begin{matrix} 2-3x & 2x-1 & -1 \\\ 8 & -6 & 2 \\\ x-6 & 3 & -1 \\\ \end{matrix} \right]
The third step is to find the Adjoint of matrix AA, which is transpose of cofactor matrix:
Adj [A]=[23x8x6 2x163 121 ]\text{Adj }\left[ A \right]=\left[ \begin{matrix} 2-3x & 8 & x-6 \\\ 2x-1 & -6 & 3 \\\ -1 & 2 & -1 \\\ \end{matrix} \right]
The fourth step is to find the determinant of the matrix.
A=013 12x 231 \left| A \right|=\left| \begin{matrix} 0 & 1 & 3 \\\ 1 & 2 & x \\\ 2 & 3 & 1 \\\ \end{matrix} \right|
On calculation we get:
A=0(23x)1(12x)+3(34)\Rightarrow \left| A \right|=0\left( 2-3x \right)-1\left( 1-2x \right)+3\left( 3-4 \right)
A=1(12x)+3(1)\Rightarrow \left| A \right|=-1\left( 1-2x \right)+3\left( -1 \right)
A=2x13\Rightarrow \left| A \right|=2x-1-3
A=2x4\Rightarrow \left| A \right|=2x-4
A=2(x2)\Rightarrow \left| A \right|=2\left( x-2 \right)
In the above four steps we found the value for the R.H.S of the formula of the [A]1{{\left[ A \right]}^{-1}}, which says [A]1=1AAdj.[A]{{\left[ A \right]}^{-1}}=\dfrac{1}{\left| A \right|}\text{Adj}\text{.}\left[ A \right]. On substituting the value in the formula we get:
[12452 12332 12y12 ]=12(x2)[23x8x6 2x163 121 ]\left[ \begin{matrix} \dfrac{1}{2} & -4 & \dfrac{5}{2} \\\ \dfrac{-1}{2} & 3 & \dfrac{-3}{2} \\\ \dfrac{1}{2} & y & \dfrac{1}{2} \\\ \end{matrix} \right]=\dfrac{1}{2\left( x-2 \right)}\left[ \begin{matrix} 2-3x & 8 & x-6 \\\ 2x-1 & -6 & 3 \\\ -1 & 2 & -1 \\\ \end{matrix} \right]
Now we will be comparing the terms in L.H.S to the terms in R.H.S. We will find the value of xx. For that we will equate the first term of both the matrices. On doing this we get:
12=23x2(x2)\Rightarrow \dfrac{1}{2}=\dfrac{2-3x}{2\left( x-2 \right)}
11=23x(x2)\Rightarrow \dfrac{1}{1}=\dfrac{2-3x}{\left( x-2 \right)}
x2=23x\Rightarrow x-2=2-3x
On calculating further we get:
x+3x=2+2\Rightarrow x+3x=2+2
4x=4\Rightarrow 4x=4
On dividing both side by 44 , we get:
x=1\Rightarrow x=1
Now we will solve for the value of yy, the equation for solving this is:
y=22(x2)\Rightarrow y=\dfrac{2}{2\left( x-2 \right)}
Since we know the value of xx , so after substitution the value of yy will be:
y=1(12)\Rightarrow y=\dfrac{1}{\left( 1-2 \right)}
y=1\Rightarrow y=-1
\therefore The value of xx and yy are 11 and 1-1 respectively.

Note: Each element in a square matrix has its own minor. The minor is the value of the determinant of the matrix that results from crossing out the row and column of the element under consideration. To find the Adjoint of a matrix we have to find the minor of the matrix and then the cofactor of the matrix.