Solveeit Logo

Question

Question: If \[A = \left[ {\begin{array}{*{20}{l}}1&2&3\\\\{ - 1}&1&2\\\1&2&4\end{array}} \right]\], then \[\l...

If A = \left[ {\begin{array}{*{20}{l}}1&2&3\\\\{ - 1}&1&2\\\1&2&4\end{array}} \right], then (A25A)A1=\left( {{A^2} - 5A} \right){A^{ - 1}} =
A.\left[ {\begin{array}{*{20}{l}}4&2&3\\\\{ - 1}&4&2\\\1&2&1\end{array}} \right]
B.\left[ {\begin{array}{*{20}{l}}{ - 4}&2&3\\\\{ - 1}&{ - 4}&2\\\1&2&{ - 1}\end{array}} \right]
C.\left[ {\begin{array}{*{20}{l}}{ - 4}&{ - 1}&1\\\2&{ - 4}&2\\\3&2&{ - 1}\end{array}} \right]
D.\left[ {\begin{array}{*{20}{l}}{ - 1}&{ - 2}&1\\\4&{ - 2}&{ - 3}\\\1&4&{ - 2}\end{array}} \right]

Explanation

Solution

We will find A2{A^2}, 5A5A and A1{A^{ - 1}} using matrix operations. We will substitute the values we will obtain in the expression given in the question and solve accordingly. Then we will compare the result with options that are given and choose the correct option.

Formulas used: We will use the following formulas:
1.Matrix multiplication:\left[ {\begin{array}{*{20}{l}}a&b;&c;\\\d&e;&f;\\\g&h;&i;\end{array}} \right]\left[ {\begin{array}{*{20}{l}}j&k;&l;\\\m&n;&o;\\\p&q;&r;\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{aj + bm + cp}&{ak + bn + cq}&{al + bo + cr}\\\\{dj + em + fp}&{dk + en + fq}&{dl + eo + fr}\\\\{gj + hm + ip}&{gk + hn + iq}&{gl + ho + ir}\end{array}} \right]
2.Multiplication of a scalar nn with a matrix:
n\left[ {\begin{array}{*{20}{l}}a&b;&c;\\\d&e;&f;\\\g&h;&i;\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{an}&{bn}&{cn}\\\\{dn}&{en}&{fn}\\\\{gn}&{hn}&{in}\end{array}} \right]
3.The determinant of a matrix \left[ {\begin{array}{*{20}{l}}a&b;&c;\\\d&e;&f;\\\g&h;&i;\end{array}} \right]is a(eifh)b(difg)+c(dheg)a\left( {ei - fh} \right) - b\left( {di - fg} \right) + c\left( {dh - eg} \right)

Complete step-by-step answer:
We will first find A2{A^2}. We will substitute 1 for aa and jj, 2 for bb and kk, 3 for cc and ll, -1 for dd and mm, 1 for ee and nn, 2 for ff and oo, 1 for gg and pp, 2 for hh and qq and 4 for ii and rr in the formula \left[ {\begin{array}{*{20}{l}}a&b;&c;\\\d&e;&f;\\\g&h;&i;\end{array}} \right]\left[ {\begin{array}{*{20}{l}}j&k;&l;\\\m&n;&o;\\\p&q;&r;\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{aj + bm + cp}&{ak + bn + cq}&{al + bo + cr}\\\\{dj + em + fp}&{dk + en + fq}&{dl + eo + fr}\\\\{gj + hm + ip}&{gk + hn + iq}&{gl + ho + ir}\end{array}} \right]:
\begin{array}{l}{A^2} = \left[ {\begin{array}{*{20}{l}}1&2&3\\\\{ - 1}&1&2\\\1&2&4\end{array}} \right]\left[ {\begin{array}{*{20}{l}}1&2&3\\\\{ - 1}&1&2\\\1&2&4\end{array}} \right]\\\\{A^2} = \left[ {\begin{array}{*{20}{l}}{1 - 2 + 3}&{2 + 2 + 6}&{3 + 4 + 12}\\\\{ - 1 - 1 + 2}&{ - 2 + 1 + 4}&{ - 3 + 2 + 8}\\\\{1 - 2 + 4}&{2 + 2 + 8}&{3 + 4 + 16}\end{array}} \right]\\\\{A^2} = \left[ {\begin{array}{*{20}{l}}2&{10}&{19}\\\0&3&7\\\3&{12}&{23}\end{array}} \right]\end{array}
We will now find 5A - 5A. We will substitute 5 - 5 for nn, 1 for aa, 2 for bb, 3 for cc, -1 for dd, 1 for ee, 2 for ff, 1 for gg, 2 for hh and 4 for ii in the formula n\left[ {\begin{array}{*{20}{l}}a&b;&c;\\\d&e;&f;\\\g&h;&i;\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}{an}&{bn}&{cn}\\\\{dn}&{en}&{fn}\\\\{gn}&{hn}&{in}\end{array}} \right]:
\begin{array}{l} - 5A = - 5\left[ {\begin{array}{*{20}{l}}1&2&3\\\\{ - 1}&1&2\\\1&2&4\end{array}} \right]\\\ - 5A = \left[ {\begin{array}{*{20}{l}}{ - 5}&{ - 10}&{ - 15}\\\5&{ - 5}&{ - 10}\\\\{ - 5}&{ - 10}&{ - 20}\end{array}} \right]\end{array}
We will find A1{A^{ - 1}} using elementary row operations:
\begin{array}{l}A = AI\\\\\left[ {\begin{array}{*{20}{l}}1&2&3\\\\{ - 1}&1&2\\\1&2&4\end{array}} \right] = A\left[ {\begin{array}{*{20}{l}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right]\end{array}
We will perform the following operation on the above matrix.
R2R2+R1R3R3R1\begin{array}{l}{R_2} \to {R_2} + {R_1}\\\\{R_3} \to {R_3} - {R_1}\end{array}
\left[ {\begin{array}{*{20}{l}}1&2&3\\\0&3&5\\\0&0&1\end{array}} \right] = A\left[ {\begin{array}{*{20}{l}}1&0&0\\\1&1&0\\\\{ - 1}&0&1\end{array}} \right]
We will perform the following operation on the above matrix.
R2R23R1R12R2\begin{array}{l}{R_2} \to \dfrac{{{R_2}}}{3}\\\\{R_1} \to {R_1} - 2{R_2}\end{array}
\left[ {\begin{array}{*{20}{l}}1&0&{ - \dfrac{1}{3}}\\\0&1&{\dfrac{5}{3}}\\\0&0&1\end{array}} \right] = A\left[ {\begin{array}{*{20}{l}}{\dfrac{1}{3}}&{ - \dfrac{2}{3}}&0\\\\{\dfrac{1}{3}}&{\dfrac{1}{3}}&0\\\\{ - 1}&0&1\end{array}} \right]
Again we will perform the following operation on the above matrix.
R1R1+R33R2R253R3\begin{array}{l}{R_1} \to {R_1} + \dfrac{{{R_3}}}{3}\\\\{R_2} \to {R_2} - \dfrac{5}{3}{R_3}\end{array}
\left[ {\begin{array}{*{20}{l}}1&0&0\\\0&1&0\\\0&0&1\end{array}} \right] = A\left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right]
We know that I=AA1I = A{A^{ - 1}}. We will compare this equation with the equation obtained above.
From the comparison we can conclude that {A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right].
We will substitute \left[ {\begin{array}{*{20}{l}}2&{10}&{19}\\\0&3&7\\\3&{12}&{23}\end{array}} \right] for A2{A^2}, \left[ {\begin{array}{*{20}{l}}{ - 5}&{ - 10}&{ - 15}\\\5&{ - 5}&{ - 10}\\\\{ - 5}&{ - 10}&{ - 20}\end{array}} \right] for 5A - 5A and \left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right] for A1{A^{ - 1}} in the expression given in the question:
\begin{array}{l}\left( {{A^2} - 5A} \right){A^{ - 1}} = \left( {\left[ {\begin{array}{*{20}{l}}2&{10}&{19}\\\0&3&7\\\3&{12}&{23}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}{ - 5}&{ - 10}&{ - 15}\\\5&{ - 5}&{ - 10}\\\\{ - 5}&{ - 10}&{ - 20}\end{array}} \right]} \right)\left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right]\\\\\left( {{A^2} - 5A} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&4\\\5&{ - 2}&{ - 3}\\\\{ - 2}&2&3\end{array}} \right]\left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right]\end{array}
We will simplify this using the 1st formula. We will substitute 3 - 3 for aa, 0 for bb, 4 for cc, 5 for dd, 2 - 2 for ee, 3 - 3 for ff, 2 - 2 for gg, 2 for hh, 3 for ii, 0 for jj, 23 - \dfrac{2}{3} for kk, 13\dfrac{1}{3} for ll, 2 for mm, 13\dfrac{1}{3}for nn, 53 - \dfrac{5}{3} for oo, 1 - 1 for and pp, 0 for qq and 1 for and rr in the 1st formula:
\begin{array}{l}\left( {{A^2} - 5A} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{0 + 0 - 4}&{2 + 0 + 0}&{ - 1 + 0 + 4}\\\\{0 - 4 + 3}&{ - \dfrac{{10}}{3} - \dfrac{2}{3} + 0}&{\dfrac{5}{3} + \dfrac{{10}}{3} - 3}\\\\{0 + 4 - 3}&{\dfrac{4}{3} + \dfrac{2}{3} + 0}&{ - \dfrac{2}{3} - \dfrac{{10}}{3} + 3}\end{array}} \right]\\\\\left( {{A^2} - 5A} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 4}&2&3\\\\{ - 1}&{ - 4}&2\\\1&2&{ - 1}\end{array}} \right]\end{array}
\therefore Option B is the correct option.

Note: We can also find the A1{A^{ - 1}} using minors and cofactors.
First, we will find the minors of the matrix. To find the minor of an element, we will ignore the values of its row and column and find the determinant of the remaining values.
\begin{array}{l}{M_{11}} = \left[ {\begin{array}{*{20}{l}}1&2\\\2&4\end{array}} \right]\\\\{M_{11}} = 4 - 4\\\\{M_{11}} = 0\end{array} \begin{array}{l}{M_{12}} = \left[ {\begin{array}{*{20}{l}}{ - 1}&2\\\1&4\end{array}} \right]\\\\{M_{12}} = - 4 - 2\\\\{M_{12}} = - 6\end{array} \begin{array}{l}{M_{13}} = \left[ {\begin{array}{*{20}{l}}{ - 1}&1\\\1&2\end{array}} \right]\\\\{M_{13}} = - 2 - 1\\\\{M_{13}} = - 3\end{array}
\begin{array}{l}{M_{21}} = \left[ {\begin{array}{*{20}{l}}2&3\\\2&4\end{array}} \right]\\\\{M_{21}} = 8 - 6\\\\{M_{21}} = 2\end{array} \begin{array}{l}{M_{22}} = \left[ {\begin{array}{*{20}{l}}1&3\\\1&4\end{array}} \right]\\\\{M_{22}} = 4 - 3\\\\{M_{22}} = 1\end{array} \begin{array}{l}{M_{23}} = \left[ {\begin{array}{*{20}{l}}1&2\\\1&2\end{array}} \right]\\\\{M_{23}} = 2 - 2\\\\{M_{23}} = 0\end{array}
\begin{array}{l}{M_{31}} = \left[ {\begin{array}{*{20}{l}}2&3\\\1&2\end{array}} \right]\\\\{M_{31}} = 4 - 3\\\\{M_{31}} = 1\end{array} \begin{array}{l}{M_{32}} = \left[ {\begin{array}{*{20}{l}}1&3\\\\{ - 1}&2\end{array}} \right]\\\\{M_{32}} = 2 - \left( { - 3} \right)\\\\{M_{32}} = 5\end{array} \begin{array}{l}{M_{33}} = \left[ {\begin{array}{*{20}{l}}1&2\\\\{ - 1}&1\end{array}} \right]\\\\{M_{33}} = 1 - \left( { - 2} \right)\\\\{M_{33}} = 3\end{array}
We will create a matrix of minors:
\left[ {\begin{array}{*{20}{l}}{{M_{11}}}&{{M_{12}}}&{{M_{13}}}\\\\{{M_{21}}}&{{M_{22}}}&{{M_{23}}}\\\\{{M_{31}}}&{{M_{32}}}&{{M_{33}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}0&{ - 6}&{ - 3}\\\2&1&0\\\1&5&3\end{array}} \right]
We will find the matrix of cofactors. For this, we will change the signs of alternate elements of the minor matrix. The cofactor matrix is given by:
C = \left[ {\begin{array}{*{20}{l}}0&6&{ - 3}\\\\{ - 2}&1&0\\\1&{ - 5}&3\end{array}} \right]
We will find the transpose of the matrix:
C' = \left[ {\begin{array}{*{20}{l}}0&{ - 2}&1\\\6&1&{ - 5}\\\\{ - 3}&0&3\end{array}} \right]
We will find the determinant of AA . We will substitute 1 for aa, 2 for bb, 3 for cc, -1 for dd, 1 for ee, 2 for ff, 1 for gg, 2 for hh and 4 for ii in the 3rd formula:
A=1(44)2(42)+3(21)A=02(6)+3(3)A=3\begin{array}{l}\left| A \right| = 1\left( {4 - 4} \right) - 2\left( { - 4 - 2} \right) + 3\left( { - 2 - 1} \right)\\\\\left| A \right| = 0 - 2\left( { - 6} \right) + 3\left( { - 3} \right)\\\\\left| A \right| = 3\end{array}
The inverse of the matrix will be 1AC\dfrac{1}{{\left| A \right|}}C' :
\begin{array}{l}{A^{ - 1}} = \dfrac{1}{3}\left[ {\begin{array}{*{20}{l}}0&{ - 2}&1\\\6&1&{ - 5}\\\\{ - 3}&0&3\end{array}} \right]\\\\{A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right]\end{array}
We have calculated the inverse of the matrix using an alternate method. Now we will proceed in the same way.
We will substitute \left[ {\begin{array}{*{20}{l}}2&{10}&{19}\\\0&3&7\\\3&{12}&{23}\end{array}} \right] for A2{A^2}, \left[ {\begin{array}{*{20}{l}}{ - 5}&{ - 10}&{ - 15}\\\5&{ - 5}&{ - 10}\\\\{ - 5}&{ - 10}&{ - 20}\end{array}} \right] for 5A - 5A and \left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right] for A1{A^{ - 1}} in the expression given in the question:
\begin{array}{l}\left( {{A^2} - 5A} \right){A^{ - 1}}\\\ = \left( {\left[ {\begin{array}{*{20}{l}}2&{10}&{19}\\\0&3&7\\\3&{12}&{23}\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}{ - 5}&{ - 10}&{ - 15}\\\5&{ - 5}&{ - 10}\\\\{ - 5}&{ - 10}&{ - 20}\end{array}} \right]} \right)\left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right]\\\ = \left[ {\begin{array}{*{20}{l}}{ - 3}&0&4\\\5&{ - 2}&{ - 3}\\\\{ - 2}&2&3\end{array}} \right]\left[ {\begin{array}{*{20}{l}}0&{ - \dfrac{2}{3}}&{\dfrac{1}{3}}\\\2&{\dfrac{1}{3}}&{ - \dfrac{5}{3}}\\\\{ - 1}&0&1\end{array}} \right]\end{array}
We will simplify this using the 1st formula. We will substitute 3 - 3 for aa, 0 for bb, 4 for cc, 5 for dd, 2 - 2 for ee, 3 - 3 for ff, 2 - 2 for gg, 2 for hh, 3 for ii, 0 for jj, 23 - \dfrac{2}{3} for kk, 13\dfrac{1}{3} for ll, 2 for mm, 13\dfrac{1}{3}for nn, 53 - \dfrac{5}{3} for oo, 1 - 1 for and pp, 0 for qq and 1 for and rr in the 1st formula:
\begin{array}{l}\left( {{A^2} - 5A} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{0 + 0 - 4}&{2 + 0 + 0}&{ - 1 + 0 + 4}\\\\{0 - 4 + 3}&{ - \dfrac{{10}}{3} - \dfrac{2}{3} + 0}&{\dfrac{5}{3} + \dfrac{{10}}{3} - 3}\\\\{0 + 4 - 3}&{\dfrac{4}{3} + \dfrac{2}{3} + 0}&{ - \dfrac{2}{3} - \dfrac{{10}}{3} + 3}\end{array}} \right]\\\\\Rightarrow \left( {{A^2} - 5A} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{l}}{ - 4}&2&3\\\\{ - 1}&{ - 4}&2\\\1&2&{ - 1}\end{array}} \right]\end{array}
\therefore Option B is the correct option.