Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \...
If A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right] then A4n+1,n∈N
\left( a \right)\left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right]
\left( b \right)\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right]
\left( c \right)\left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
\left( d \right)\left[ {\begin{array}{*{20}{c}}
{ - i}&0&0 \\\
0&{ - i}&0 \\\
0&0&{ - i}
\end{array}} \right]
Solution
In this particular question use the concept that first find out the square of the matrix and then fourth power of the matrix using matrix multiplication and also use that in complex, i=−1⇒i2=−1 so use these concepts to reach the solution of the question.
Complete step by step answer:
Given matrix
A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
Now we have to find out the value of A4n+1, where n∈N.
Now multiply matrix A with matrix A we have,
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
Now apply matrix multiplication rule we have,
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{i^2} + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 0} \\\
{0 + 0 + 0}&{0 + {i^2} + 0}&{0 + 0 + 0} \\\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + {i^2}}
\end{array}} \right]
Now as we know that in complex, i=−1⇒i2=−1 s use this property we have,
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right]
Now multiply A2 with A2 we have,
\Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right]
\Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - 1} \right)}^2} + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 0} \\\
{0 + 0 + 0}&{0 + {{\left( { - 1} \right)}^2} + 0}&{0 + 0 + 0} \\\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + {{\left( { - 1} \right)}^2}}
\end{array}} \right]
\Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right] = I..................... (1), where I is called as identity matrix.
Now as we know that Im=1...........(2),m∈N
Now we have to find out the value of
A4n+1
Now the above equation is also written as,
⇒A4n+1=(A4n)(A)
⇒A4n+1=(A4)n(A)
Now from equation (1) we have,
⇒A4n+1=(I)n(A)
Now from equation (2) we have,
⇒A4n+1=(1)(A)
⇒A4n+1=(A)
\Rightarrow {A^{4n + 1}} = A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept we have to remember is that we always recall how to multiply two matrices which is shown above and always recall that the power of identity matrix which belongs to a natural number always remains an identity matrix.