Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \...
If A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right] then A4n+1= , (n∈N)
A. \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right]
B. \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right]
C. \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
D. \left[ {\begin{array}{*{20}{c}}
{ - i}&0&0 \\\
0&{ - i}&0 \\\
0&0&{ - i}
\end{array}} \right]
Solution
we have given the value of A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
Then, we will find the value of A4n+1
First, We will find the value of A2 then after finding the value of A2 we will find the value of A4
After that using the property A4n+1=A4n.
Complete step by step solution:
Here, we have given the value of A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
So, we have to find the value of A4n+1
Now,
A2=A.A
\therefore {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
∴ By solving above equation, we get
{A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right]
Now, for A4
A4=A2.A2
\therefore {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\\
0&{ - 1}&0 \\\
0&0&{ - 1}
\end{array}} \right]
∴By solving above equation, we get
{A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right] = I
We can also write A4n+1 as A4n .A
∴A4n.A=(A4)n.A
∵We have proven above that A4=I
∴A4n.A=(I)n.A
As we know that In=I
∴A4n.A=I.A
∴A4n+1=A
\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\\
0&i;&0 \\\
0&0&i;
\end{array}} \right]
Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A =[aij] is called a symmetric matrix if aij=aij, for all i, j.
Skew-Symmetric Matrix: When aij=−aij
Orthogonal Matrix: If AAT=In=AT.A
Involuntary Matrix: A2=I or A−1=A
Idempotent Matrix: If A2=A