Solveeit Logo

Question

Question: If \(A = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \...

If A = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \right] then A4n+1={A^{4n + 1}} = , (nN)\left( {n \in N} \right)
A. \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right]
B. \left[ {\begin{array}{*{20}{c}} { - 1}&0&0 \\\ 0&{ - 1}&0 \\\ 0&0&{ - 1} \end{array}} \right]
C. \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \right]
D. \left[ {\begin{array}{*{20}{c}} { - i}&0&0 \\\ 0&{ - i}&0 \\\ 0&0&{ - i} \end{array}} \right]

Explanation

Solution

we have given the value of A = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \right]
Then, we will find the value of A4n+1{A^{4n + 1}}
First, We will find the value of A2{A^2} then after finding the value of A2{A^2} we will find the value of A4{A^4}
After that using the property A4n+1=A4n{A^{4n + 1}}={A^{4n}}.

Complete step by step solution:
Here, we have given the value of A = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \right]
So, we have to find the value of A4n+1{A^{4n + 1}}
Now,
A2=A.A{A^2} = A.A
\therefore {A^2} = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \right].\left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \right]
\therefore By solving above equation, we get
{A^2} = \left[ {\begin{array}{*{20}{c}} { - 1}&0&0 \\\ 0&{ - 1}&0 \\\ 0&0&{ - 1} \end{array}} \right]
Now, for A4{A^4}
A4=A2.A2{A^4} = {A^2}.{A^2}
\therefore {A^4} = \left[ {\begin{array}{*{20}{c}} { - 1}&0&0 \\\ 0&{ - 1}&0 \\\ 0&0&{ - 1} \end{array}} \right].\left[ {\begin{array}{*{20}{c}} { - 1}&0&0 \\\ 0&{ - 1}&0 \\\ 0&0&{ - 1} \end{array}} \right]
\therefore By solving above equation, we get
{A^4} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right] = I
We can also write A4n+1{A^{4n + 1}} as A4n{A^{4n}} .A
A4n.A=(A4)n.A\therefore {A^{4n}}.A = {\left( {{A^4}} \right)^n}.A
\because We have proven above that A4=I{A^4} = I
A4n.A=(I)n.A\therefore {A^{4n}}.A = {\left( I \right)^n}.A
As we know that In=I{I^n} = I
A4n.A=I.A\therefore {A^{4n}}.A = I.A
A4n+1=A\therefore {A^{4n + 1}} = A
\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}} i&0&0 \\\ 0&i;&0 \\\ 0&0&i; \end{array}} \right]

Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A =[aij] = \left[ {{a_{ij}}} \right] is called a symmetric matrix if aij=aij,{a_{ij}} = {a_{ij}}, for all i, j.
Skew-Symmetric Matrix: When aij=aij{a_{ij}} = - {a_{ij}}
Orthogonal Matrix: If AAT=In=AT.AA{A^T} = {I_n} = {A^T}.A
Involuntary Matrix: A2=I{A^2} = I or A1=A{A^{ - 1}} = A
Idempotent Matrix: If A2=A{A^2} = A