Solveeit Logo

Question

Question: If \(A = \left[ {\begin{array}{*{20}{c}} 3&3&3 \\\ 3&3&3 \\\ 3&3&3 \end{array}} \ri...

If A = \left[ {\begin{array}{*{20}{c}} 3&3&3 \\\ 3&3&3 \\\ 3&3&3 \end{array}} \right], then A4{A^4} is equal to
A. 27A27A
B. 81A81A
C. 243A243A
D. 729A729A

Explanation

Solution

First find the value of A2{A^2} by taking the product of matrix A with itself and then use it to find the value of A4{A^4} that is the required result.

Complete step by step solution:
We have given a matrix having the form:
A = \left[ {\begin{array}{*{20}{c}} 3&3&3 \\\ 3&3&3 \\\ 3&3&3 \end{array}} \right]
The goal is to find the value of A4{A^4}.
We can express A4{A^4} as A2×A2{A^2} \times {A^2}, so first, we need to find the value of A2{A^2}.
The value of A2{A^2} is given as the product of a matrix AA with itself. That is,
A2=A×A{A^2} = A \times A
Substitute the value of the matrix given in the problem:
{A^2} = \left[ {\begin{array}{*{20}{c}} 3&3&3 \\\ 3&3&3 \\\ 3&3&3 \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} 3&3&3 \\\ 3&3&3 \\\ 3&3&3 \end{array}} \right]
Find the product of matrices,
{A^2} = \left[ {\begin{array}{*{20}{c}} {3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3} \\\ {3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3} \\\ {3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3} \end{array}} \right]

{27}&{27}&{27} \\\ {27}&{27}&{27} \\\ {27}&{27}&{27} \end{array}} \right]$$ Now, we have the value of${A^2}$. Use this value to find the value of${A^4}$. ${A^4} = {A^2} \times {A^2}$ Substitute the value of the matrix${A^2}$in the above equation: ${A^4} = \left[ {\begin{array}{*{20}{c}} {27}&{27}&{27} \\\ {27}&{27}&{27} \\\ {27}&{27}&{27} \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} {27}&{27}&{27} \\\ {27}&{27}&{27} \\\ {27}&{27}&{27} \end{array}} \right]$ Find the product of the above matrix: ${A^4} = \left[ {\begin{array}{*{20}{c}} {27 \times 27 + 27 \times 27 + 27 \times 27}&{27 \times 27 + 27 \times 27 + 27 \times 27}&{27 \times 27 + 27 \times 27 + 27 \times 27} \\\ {27 \times 27 + 27 \times 27 + 27 \times 27}&{27 \times 27 + 27 \times 27 + 27 \times 27}&{27 \times 27 + 27 \times 27 + 27 \times 27} \\\ {27 \times 27 + 27 \times 27 + 27 \times 27}&{27 \times 27 + 27 \times 27 + 27 \times 27}&{27 \times 27 + 27 \times 27 + 27 \times 27} \end{array}} \right]$ ${A^4} = \left[ {\begin{array}{*{20}{c}} {3 \times 729}&{3 \times 729}&{3 \times 729} \\\ {3 \times 729}&{3 \times 729}&{3 \times 729} \\\ {3 \times 729}&{3 \times 729}&{3 \times 729} \end{array}} \right]$ Take out $729$as a common factor from all the elements. ${A^4} = 729\left[ {\begin{array}{*{20}{c}} 3&3&3 \\\ 3&3&3 \\\ 3&3&3 \end{array}} \right]$ ${A^4} = 729A$ We have obtained the value of ${A^4}$ as$729A$. **Therefore, the option (d) is correct.** **Note:** Before multiplying the matrix, we have to check, that is it possible to multiply the matrices. We can say that the matrices are possible to multiply if the number of columns in the first matrix is equal to the number of rows of the other matrix. If this condition does not hold then it is not possible to multiply the matrices. We can see that we have a matrix $A$ of dimension $3 \times 3$, so its multiplication with itself is possible because the number of rows in the matrix is equal to the number of columns in the matrix.