Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} 3&3&3 \\\ 3&3&3 \\\ 3&3&3 \end{array}} \ri...
If A = \left[ {\begin{array}{*{20}{c}}
3&3&3 \\\
3&3&3 \\\
3&3&3
\end{array}} \right], then A4 is equal to
A. 27A
B. 81A
C. 243A
D. 729A
Solution
First find the value of A2 by taking the product of matrix A with itself and then use it to find the value of A4 that is the required result.
Complete step by step solution:
We have given a matrix having the form:
A = \left[ {\begin{array}{*{20}{c}}
3&3&3 \\\
3&3&3 \\\
3&3&3
\end{array}} \right]
The goal is to find the value of A4.
We can express A4 as A2×A2, so first, we need to find the value of A2.
The value of A2 is given as the product of a matrix A with itself. That is,
A2=A×A
Substitute the value of the matrix given in the problem:
{A^2} = \left[ {\begin{array}{*{20}{c}}
3&3&3 \\\
3&3&3 \\\
3&3&3
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
3&3&3 \\\
3&3&3 \\\
3&3&3
\end{array}} \right]
Find the product of matrices,
{A^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3} \\\
{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3} \\\
{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3}&{3 \times 3 + 3 \times 3 + 3 \times 3}
\end{array}} \right]