Solveeit Logo

Question

Question: If \(A = \left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 1} \end{array}} \right]\) th...

If A = \left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 1} \end{array}} \right] then {A^k} = \left[ {\begin{array}{*{20}{c}} {1 + 2k}&{ - 4k} \\\ k&{1 - 2k} \end{array}} \right]
Where k is any positive integer.

Explanation

Solution

Hint-In this question, we use the concept of Arithmetic Progression. We know the nth term of an A.P. is an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d . In this question we also use the concept of multiplication of two matrices.

Complete step-by-step answer:
Given, A = \left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 1} \end{array}} \right]
Now, we have to find the values A2{A^2}, A3{A^3} and A4{A^4} to identify the type of series followed by each element of the matrix.
{A^2} = \left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 1} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 1} \end{array}} \right]
We use the concept of multiplication of two matrices.
{A^2} = \left[ {\begin{array}{*{20}{c}} {3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\\ {1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)} \end{array}} \right] \\\ {A^2} = \left[ {\begin{array}{*{20}{c}} {9 - 4}&{ - 12 + 4} \\\ {3 - 1}&{ - 4 + 1} \end{array}} \right] \\\ {A^2} = \left[ {\begin{array}{*{20}{c}} 5&{ - 8} \\\ 2&{ - 3} \end{array}} \right] \\\
Now, we find the value of A3{A^3}
{A^3} = \left[ {\begin{array}{*{20}{c}} 5&{ - 8} \\\ 2&{ - 3} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 1} \end{array}} \right] \\\ {A^3} = \left[ {\begin{array}{*{20}{c}} {15 - 8}&{ - 20 + 8} \\\ {6 - 3}&{ - 8 + 3} \end{array}} \right] \\\ {A^3} = \left[ {\begin{array}{*{20}{c}} 7&{ - 12} \\\ 3&{ - 5} \end{array}} \right] \\\
Now, we find the value of A4{A^4}
{A^4} = \left[ {\begin{array}{*{20}{c}} 7&{ - 12} \\\ 3&{ - 5} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 1} \end{array}} \right] \\\ {A^4} = \left[ {\begin{array}{*{20}{c}} {21 - 12}&{ - 28 + 12} \\\ {9 - 5}&{ - 12 + 5} \end{array}} \right] \\\ {A^4} = \left[ {\begin{array}{*{20}{c}} 9&{ - 16} \\\ 4&{ - 7} \end{array}} \right] \\\
Now, we observe which type of series is followed by each element of the matrix.
First row and first column of A, A2{A^2}, A3{A^3} and A4{A^4}
3, 5, 7, 9…………….
Above series is in A.P with common difference, d=2 and first term, a=3
Now, nth term of an A.P. is an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
ak=3+(k1)×2 ak=3+2k2 ak=1+2k,where k is any positive integer  \Rightarrow {a_k} = 3 + \left( {k - 1} \right) \times 2 \\\ \Rightarrow {a_k} = 3 + 2k - 2 \\\ {a_k} = 1 + 2k,{\text{where }}k{\text{ is any positive integer}} \\\
First row and second column of A, A2{A^2}, A3{A^3} and A4{A^4}
-4, -8, -12, -16…………….
Above series is in A.P with common difference, d=-4 and first term, a=-4
Now, nth term of an A.P. is an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
ak=4+(k1)×(4) ak=44k+4 ak=4k,where k is any positive integer  \Rightarrow {a_k} = - 4 + \left( {k - 1} \right) \times \left( { - 4} \right) \\\ \Rightarrow {a_k} = - 4 - 4k + 4 \\\ {a_k} = - 4k,{\text{where }}k{\text{ is any positive integer}} \\\
Second row and first column of A, A2{A^2}, A3{A^3} and A4{A^4}
1, 2, 3, 4…………….
Above series is in A.P with common difference, d=1 and first term, a=1
Now, nth term of an A.P. is an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
ak=1+(k1)×1 ak=1+k1 ak=k,where k is any positive integer  \Rightarrow {a_k} = 1 + \left( {k - 1} \right) \times 1 \\\ \Rightarrow {a_k} = 1 + k - 1 \\\ {a_k} = k,{\text{where }}k{\text{ is any positive integer}} \\\
Second row and Second column of A, A2{A^2}, A3{A^3} and A4{A^4}
-1, -3, -5, -7…………….
Above series is in A.P with common difference, d=-2 and first term, a=-1
Now, nth term of an A.P. is an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
ak=1+(k1)×(2) ak=12k+2 ak=12k,where k is any positive integer  \Rightarrow {a_k} = - 1 + \left( {k - 1} \right) \times \left( { - 2} \right) \\\ \Rightarrow {a_k} = - 1 - 2k + 2 \\\ {a_k} = 1 - 2k,{\text{where }}k{\text{ is any positive integer}} \\\
So, it’s proved {A^k} = \left[ {\begin{array}{*{20}{c}} {1 + 2k}&{ - 4k} \\\ k&{1 - 2k} \end{array}} \right],{\text{where }}k{\text{ is any positive integer}}
Note-In such types of problems we use the concept of series first we have to find the value A2{A^2}, A3{A^3} and A4{A^4} and then observe which type of series followed by each element of matrices. If it is arithmetic progression then we use the nth term of an A.P. So, we will get the required answer.