Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \...
If A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\\
3&2&{ - 4} \\\
1&1&{ - 2}
\end{array}} \right], find A−1, using A−1 solve the system of equations
2x−3y+5z=11 3x+2y−4z=5 x+y−2z=3
Solution
Hint: In this question first convert the system of equation into matrix format, then apply the formula of A inverse which is A−1=∣A∣1adj(A), and later on use the concept of matrix multiplication, so use these concepts to get the solution of the question.
Complete step-by-step answer:
Given system of equation are
2x−3y+5z=11 3x+2y−4z=5 x+y−2z=3
First convert the system of equations into matrix format we have,
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 2 \right) \\
{c_{11}} = + 1\left| {\begin{array}{{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - \left( { - 4} \right)} \right) = 0,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1\left( {6 - 5} \right) = - 1,{\text{ }}{{\text{c}}{31}} = + 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
2&{ - 4}
\end{array}} \right| = 1\left( {12 - 10} \right) = 2 \\
{c{12}} = - 1\left| {\begin{array}{{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = - 1\left( { - 6 - \left( { - 4} \right)} \right) = 2,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - 5} \right) = - 9,{\text{ }}{{\text{c}}{32}} = - 1\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = - 1\left( { - 8 - 15} \right) = 23 \\
{c{13}} = + 1\left| {\begin{array}{{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1\left( {3 - 2} \right) = 1,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 1\left( {2 + 3} \right) = - 5,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 1\left( {4 - \left( { - 9} \right)} \right) = 13 \\