Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \...
If A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\\
3&2&{ - 4} \\\
1&1&{ - 2}
\end{array}} \right], find A−1.
Use it to solve the system of equations:
2x−3y+5z=11
3x+2y−4z=−5
x+y−2z=−3
Solution
If we want to find A−1 using row operations, write A=IA and apply a sequence of row operations on A=IA till we get, I=BA. Then, the matrix B will be the inverse of A.
Complete step-by-step answer:
Write A=IA, i.e.,
\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\\
3&2&{ - 4} \\\
1&1&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right]A
ApplyingR1↔R3,
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&1&{ - 2} \\\
3&2&{ - 4} \\\
2&{ - 3}&5
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&1 \\\
0&1&0 \\\
1&0&0
\end{array}} \right]A
ApplyingR2→R2−3R1,