Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \...
If A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \end{array}} \right] and find A−1 and solve the system of linear equation 2x−3y+5z=11,3x+2y−4z=−5 and x+y−2z=−3.
Solution
We have a square matrix A , which is nonsingular then there exist an n×n matrix A−1 which is called the inverse of A such that AA−1=A−1A=I , where I is the identity matrix.
Complete step-by-step solution:
Given:
2x−3y+5z=11 3x+2y−4z=−5 x+y−2z=−3
System of linear equation A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\\
3&2&{ - 4} \\\
1&1&{ - 2}
\end{array}} \right]
A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\\
3&2&{ - 4} \\\
1&1&{ - 2}
\end{array}} \right]
[Solving determinant, we get]
\left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\\
3&2&{ - 4} \\\
1&1&{ - 2}
\end{array}} \right| \\\
= 2( - 4 + 4) + 3( - 6 + 4) + 5(3 - 2) \\\
= 0 - 6 + 5 \\\
= - 1 \\\
Let cij be the co-factors of the element aij in A=[aij] . Then,
Now, finding the adj(A)
adj = {\left[ {\begin{array}{*{20}{c}}
0&2&1 \\\
{ - 1}&{ - 9}&5 \\\
2&{23}&{13}
\end{array}} \right]^T} \\\
= \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\\
2&{ - 9}&{23} \\\
1&{ - 5}&{13}
\end{array}} \right] \\\
We knew that the formula of A−1 is
\Rightarrow {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA \\\
{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\\
2&{ - 9}&{23} \\\
1&{ - 5}&{13}
\end{array}} \right] \\\
Now, the given system of equation can be written in matrix form as follows,
\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\\
3&2&{ - 4} \\\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\\
y \\\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\\
{ - 5} \\\
{ - 3}
\end{array}} \right] \\\
X = {A^{ - 1}}B \\\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\\
y \\\
z
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\\
2&{ - 9}&{23} \\\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\\
{ - 5} \\\
{ - 3}
\end{array}} \right] \\\
Multiplying A−1B we get,
Note: In this type of question students often make mistakes while finding the cofactor so keep your mind focused while doing so. Also A−1=A1∣A∣ as many people make this mistake. Remember transpose of a matrix is nothing but interchanging the row into column and vice-versa.