Solveeit Logo

Question

Question: If \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \...

If A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \end{array}} \right] and find A1{A^{ - 1}} and solve the system of linear equation 2x3y+5z=11,3x+2y4z=52x - 3y + 5z = 11,3x + 2y - 4z = - 5 and x+y2z=3.x + y - 2z = - 3.

Explanation

Solution

We have a square matrix AA , which is nonsingular then there exist an n×nn \times n matrix A1{A^{ - 1}} which is called the inverse of AA such that AA1=A1A=IA{A^{ - 1}} = {A^{ - 1}}A = I , where II is the identity matrix.

Complete step-by-step solution:

Given:
2x3y+5z=11 3x+2y4z=5 x+y2z=3  2x - 3y + 5z = 11 \\\ 3x + 2y - 4z = - 5 \\\ x + y - 2z = - 3 \\\
System of linear equation A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \end{array}} \right]
A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \end{array}} \right]

[Solving determinant, we get]

\left| A \right| = \left| {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \end{array}} \right| \\\ = 2( - 4 + 4) + 3( - 6 + 4) + 5(3 - 2) \\\ = 0 - 6 + 5 \\\ = - 1 \\\
Let cijcij be the co-factors of the element aijaij in A=[aij]A = [aij] . Then,

{C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{c}} 2&{ - 4} \\\ 1&{ - 2} \end{array}} \right| = 0,{C_{12}} = {( - 1)^{1 + 2}}\left| {\begin{array}{*{20}{c}} 3&{ - 4} \\\ 1&{ - 2} \end{array}} \right| = 2,{C_{13}} = {( - 1)^{1 + 3}}\left| {\begin{array}{*{20}{c}} 3&2 \\\ 1&1 \end{array}} \right| = 1, \\\ {C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{c}} { - 3}&5 \\\ 1&{ - 2} \end{array}} \right| = - 1,{C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{c}} 2&5 \\\ 1&{ - 2} \end{array}} \right| = - 9,{C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{c}} 2&{ - 3} \\\ 1&1 \end{array}} \right| = - 5, \\\ {C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{c}} { - 2}&5 \\\ 2&4 \end{array}} \right| = 2,{C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{c}} 2&5 \\\ 3&{ - 4} \end{array}} \right| = 23,{C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{c}} 2&{ - 3} \\\ 3&2 \end{array}} \right| = 13. \\\

Now, finding the adj(A)adj(A)
adj = {\left[ {\begin{array}{*{20}{c}} 0&2&1 \\\ { - 1}&{ - 9}&5 \\\ 2&{23}&{13} \end{array}} \right]^T} \\\ = \left[ {\begin{array}{*{20}{c}} 0&{ - 1}&2 \\\ 2&{ - 9}&{23} \\\ 1&{ - 5}&{13} \end{array}} \right] \\\
We knew that the formula of A1{A^{ - 1}} is
\Rightarrow {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA \\\ {A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}} 0&{ - 1}&2 \\\ 2&{ - 9}&{23} \\\ 1&{ - 5}&{13} \end{array}} \right] \\\
Now, the given system of equation can be written in matrix form as follows,
\left[ {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\\ 3&2&{ - 4} \\\ 1&1&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\\ y \\\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {11} \\\ { - 5} \\\ { - 3} \end{array}} \right] \\\ X = {A^{ - 1}}B \\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} x \\\ y \\\ z \end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}} 0&{ - 1}&2 \\\ 2&{ - 9}&{23} \\\ 1&{ - 5}&{13} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {11} \\\ { - 5} \\\ { - 3} \end{array}} \right] \\\
Multiplying A1B{A^{ - 1}}B we get,

\Rightarrow \left[ {\begin{array}{*{20}{c}} x \\\ y \\\ z \end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}} {0 + 5 - 6} \\\ {22 + 45 - 69} \\\ {11 + 25 - 39} \end{array}} \right] \\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} x \\\ y \\\ z \end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}} { - 1} \\\ { - 2} \\\ { - 3} \end{array}} \right] \\\ \Rightarrow x = \dfrac{{ - 1}}{{ - 1}},y = \dfrac{{ - 2}}{1},z = \dfrac{{ - 3}}{{ - 1}} \\\ \therefore x = 1,y = - 2,z = 3 \\\

Note: In this type of question students often make mistakes while finding the cofactor so keep your mind focused while doing so. Also A11AA{A^{ - 1}} \ne \dfrac{1}{A}\left| A \right| as many people make this mistake. Remember transpose of a matrix is nothing but interchanging the row into column and vice-versa.