Question
Question: If \[A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\\ { - 4}&1 \end{array}} \right]\] , ...
If A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\\
{ - 4}&1
\end{array}} \right] , then adj(3A2+12A) is equal to
A. \left[ {\begin{array}{*{20}{c}}
{72}&{ - 84} \\\
{ - 63}&{51}
\end{array}} \right]
B. \left[ {\begin{array}{*{20}{c}}
{51}&{63} \\\
{84}&{72}
\end{array}} \right]
C. \left[ {\begin{array}{*{20}{c}}
{51}&{84} \\\
{63}&{72}
\end{array}} \right]
D. \left[ {\begin{array}{*{20}{c}}
{72}&{ - 63} \\\
{ - 84}&{51}
\end{array}} \right]
Solution
As you can see, this question is based on matrices. You must be familiar with the concept of matrices. Matric is defined as a set of numbers arranged in rows and columns so as to form a rectangular array. You are given a square matrix A and you need to find an adjoint of (3A2+12A) . The adjoint of a square matrix A=[aij]n×n is defined as the transpose of the matrix [aij]n×n , where aij is the cofactor of the element aij and adjoint of matrix A is denoted as adj A.
Complete step by step solution
Given: The matrix A is given as A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\\
{ - 4}&1
\end{array}} \right]and we need to choose the value of adj(3A2+12A) from the option mentioned in the question.
To find out the matrix 3A2 using the matrix A.
Hence, we have,
3{A^2} = 3\left( {A \cdot A} \right) \\
\Rightarrow 3{A^2} = 3\left[ {\begin{array}{{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right]\left[ {\begin{array}{{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 3{A^2} = 3\left[ {\begin{array}{{20}{c}}
{16}&{ - 9} \\
{ - 12}&{13}
\end{array}} \right] (Using{\text{ }}the{\text{ }}law{\text{ }}of{\text{ }}product{\text{ }}of{\text{ }}two{\text{ }}matrices) \\
\Rightarrow 3{A^2} = \left[ {\begin{array}{{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] \\
\Rightarrow 12A = 12\left[ {\begin{array}{{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 12A = 12\left[ {\begin{array}{{20}{c}}
2&{ - 3} \\
{ - 4}&1
\end{array}} \right] \\
\Rightarrow 12A = \left[ {\begin{array}{*{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\Rightarrow 3{A^2} = \left[ {\begin{array}{{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] ,and \\
\Rightarrow 12A = \left[ {\begin{array}{{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\Rightarrow 3{A^2} + 12A = \left[ {\begin{array}{{20}{c}}
{48}&{ - 27} \\
{ - 36}&{39}
\end{array}} \right] + \left[ {\begin{array}{{20}{c}}
{24}&{ - 36} \\
{ - 48}&{12}
\end{array}} \right] \\
\Rightarrow 3{A^2} + 12A = \left[ {\begin{array}{*{20}{c}}
{72}&{ - 63} \\
{ - 84}&{51}
\end{array}} \right] \\
Adj{\text{ }}P{\text{ }} = {\text{ }}Transpose{\text{ }}of;\left[ {\begin{array}{{20}{c}}
{cofacto{r_{11}}}&{cofacto{r_{12}}} \\
{cofacto{r_{21}}}&{cofacto{r_{22}}}
\end{array}} \right] \\
For,,,3{A^2} + 12A = \left[ {\begin{array}{{20}{c}}
{72}&{ - 63} \\
{ - 84}&{51}
\end{array}} \right] \\
72:cofacto{r_{11}} = {( - 1)^{1 + 1}} \times minor \\
= {( - 1)^2} \times 51 \\
= 51 \\
- 82:cofacto{r_{21}} = {( - 1)^{2 + 1}} \times minor \\
= {( - 1)^3} \times ( - 63) \\
= 63 \\
- 63:cofacto{r_{12}} = {( - 1)^{1 + 2}} \times minor \\
= {( - 1)^3} \times ( - 84) \\
= 84 \\
51:cofacto{r_{22}} = {( - 1)^{2 + 2}} \times minor \\
= {( - 1)^3} \times (72) \\
= 72 \\
adj(3{A^2} + 12A) = {\text{ }}Transpose{\text{ }}of;\left[ {\begin{array}{{20}{c}}
{51}&{84} \\
{63}&{72}
\end{array}} \right] \\
So, \\
adj(3{A^2} + 12A) = \left[ {\begin{array}{{20}{c}}
{51}&{84} \\
{63}&{72}
\end{array}} \right] \\