Solveeit Logo

Question

Question: If \(A = \left[ {\begin{array}{*{20}{c}} 2&1 \\\ 0&1 \end{array}} \right]\) and \(AB = I...

If A = \left[ {\begin{array}{*{20}{c}} 2&1 \\\ 0&1 \end{array}} \right] and AB=IAB = I then B=B =
A. \left[ {\begin{array}{*{20}{c}} 1&2 \\\ 1&0 \end{array}} \right]
B. \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{2}}&0 \\\ { - \dfrac{1}{2}}&1 \end{array}} \right]
C. \left[ {\begin{array}{*{20}{c}} 1&{ - \dfrac{1}{2}} \\\ 0&{\dfrac{1}{2}} \end{array}} \right]
D. \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\\ 0&1 \end{array}} \right]

Explanation

Solution

In this problem, first we will assume the matrix BB as an arbitrary 2×22 \times 2 matrix. Then, we will multiply the given matrix AA with assumed matrix BB. That is, we will find ABAB. It is given that AB=IAB = I where II is 2×22 \times 2 identity matrix. We will use this given information and equate the terms of the matrix on both sides. We will get the required matrix BB.

Complete step-by-step solution:
Let us assume that the required matrix is B = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right]. Therefore, now we have to find the values of a,b,c,da,b,c,d. In this problem, the matrix AA is given as A = \left[ {\begin{array}{*{20}{c}} 2&1 \\\ 0&1 \end{array}} \right]. Let us find ABAB by multiplying the matrix AA with matrix BB. Therefore, we get
AB = \left[ {\begin{array}{*{20}{c}} 2&1 \\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right] \\\ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}} {2\left( a \right) + 1\left( c \right)}&{2\left( b \right) + 1\left( d \right)} \\\ {0\left( a \right) + 1\left( c \right)}&{0\left( b \right) + 1\left( d \right)} \end{array}} \right] \\\ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}} {2a + c}&{2b + d} \\\ c&d; \end{array}} \right] \cdots \cdots \left( 1 \right) \\\
In this problem, it is also given that AB=I(2)AB = I \cdots \cdots \left( 2 \right) where II is 2×22 \times 2 identity matrix. Note that here the matrix II can be written as I = \left[ {\begin{array}{*{20}{c}} 1&0 \\\ 0&1 \end{array}} \right] \cdots \cdots \left( 3 \right). Now from (1),(2)\left( 1 \right),\left( 2 \right) and (3)\left( 3 \right), we can write AB = I \\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} {2a + c}&{2b + d} \\\ c&d; \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\\ 0&1 \end{array}} \right] \cdots \cdots \left( 4 \right) \\\
Let us compare the elements of both matrices. So, from (4)\left( 4 \right) we can write
2a+c=1(5) 2b+d=0(6) c=0 d=1  2a + c = 1 \cdots \cdots \left( 5 \right) \\\ 2b + d = 0 \cdots \cdots \left( 6 \right) \\\ c = 0 \\\ d = 1 \\\
Let us put the value of cc in the equation (5)\left( 5 \right). Therefore, we get 2a+0=12a=1a=122a + 0 = 1 \Rightarrow 2a = 1 \Rightarrow a = \dfrac{1}{2}
Let us put the value of dd in the equation (6)\left( 6 \right). Therefore, we get 2b+1=02b=1b=122b + 1 = 0 \Rightarrow 2b = - 1 \Rightarrow b = - \dfrac{1}{2}
Now we will put all these values of a,b,c,da,b,c,d in the assumed matrix B = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right]. So, we get B = \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\\ 0&1 \end{array}} \right]. Therefore, we can say that if A = \left[ {\begin{array}{*{20}{c}} 2&1 \\\ 0&1 \end{array}} \right] and AB=IAB = I then B = \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\\ 0&1 \end{array}} \right]. Hence, option D is correct.

Note: To solve the given problem, we can use the different method. It is given that AB=IAB = I. Let us pre-multiply A1{A^{ - 1}} on both sides. So, we get
A1(AB)=A1I (A1A)B=A1I(1)  {A^{ - 1}}\left( {AB} \right) = {A^{ - 1}}I \\\ \Rightarrow \left( {{A^{ - 1}}A} \right)B = {A^{ - 1}}I \cdots \cdots \left( 1 \right) \\\
Now we know that A1A=I{A^{ - 1}}A = I and A1I=A1{A^{ - 1}}I = {A^{ - 1}}. Use this information in equation (1)\left( 1 \right), we get
IB=A1B=A1[AI=IA=A]IB = {A^{ - 1}} \Rightarrow B = {A^{ - 1}}\quad \left[ {\because AI = IA = A} \right]. Therefore, in this problem to find the matrix BB, we will find the matrix A1{A^{ - 1}}. The inverse of matrix AA is denoted by A1{A^{ - 1}} and it is obtained by using the formula A1=adj(A)A{A^{ - 1}} = \dfrac{{adj\left( A \right)}}{{\left| A \right|}} where A0\left| A \right| \ne 0.