Question
Question: If \[A = \left[ {\begin{array}{*{20}{c}} 2&0&1 \\\ 2&1&3 \\\ 1&{ - 1}&0 \end{array}...
If A = \left[ {\begin{array}{*{20}{c}} 2&0&1 \\\ 2&1&3 \\\ 1&{ - 1}&0 \end{array}} \right] ,findA2−5A+4I and hence find the matrix X such that A2−5A+4I+X=0.
Solution
As you can see, this numerical is based on matrix. So, what is a matrix? In mathematics, matrix is defined as a set of numbers arranged in rows and columns, so as to form a rectangular array. In this numerical we need to find A2−5A+4I , for that we will find A2−5Aand4I separately and add them and we will get required answer.
Complete step by solution:
Given data: Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, even when the product remains definite after changing the order of the factors
We are given the matrix A
{A^2} = A \cdot A \\
\Rightarrow {A^2} = \left[ {\begin{array}{{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right]\left[ {\begin{array}{{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right] \\
\Rightarrow - 5A = - 5\left[ {\begin{array}{{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right] \\
\Rightarrow - 5A = \left[ {\begin{array}{{20}{c}}
{ - 10}&0&{ - 5} \\
{ - 10}&{ - 5}&{ - 15} \\
{ - 5}&5&0
\end{array}} \right] \\
\Rightarrow 4I = 4\left[ {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] \\
\Rightarrow 4I = \left[ {\begin{array}{{20}{c}}
4&0&0 \\
0&4&0 \\
0&0&4
\end{array}} \right] \\
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{{20}{c}}
5&{ - 1}&2 \\
9&{ - 2}&5 \\
0&{ - 1}&{ - 2}
\end{array}} \right] + \left[ {\begin{array}{{20}{c}}
{ - 10}&0&{ - 5} \\
{ - 10}&{ - 5}&{ - 15} \\
{ - 5}&5&0
\end{array}} \right] + \left[ {\begin{array}{{20}{c}}
4&0&0 \\
0&4&0 \\
0&0&4
\end{array}} \right] \\
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{{20}{c}}
{5 - 10 + 4}&{ - 1 + 0 + 0}&{2 - 5 + 0} \\
{9 - 10 - 0}&{ - 2 - 5 + 4}&{5 - 15 + 0} \\
{0 - 5 + 0}&{ - 1 + 5 + 0}&{ - 2 + 0 + 4}
\end{array}} \right] \\
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right] \\
{A^2} - 5A + 4I + X = 0 \\
\Rightarrow X = 0 - ({A^2} - 5A + 4I) \\
\Rightarrow X = - ({A^2} - 5A + 4I) \\
\Rightarrow X = - \left[ {\begin{array}{{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right] \\
\Rightarrow X = \left[ {\begin{array}{{20}{c}}
1&1&3 \\
1&3&{10} \\
5&{ - 4}&{ - 2}
\end{array}} \right] \\