Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 2} \\\ { - 2}&2 \end{array}} \right]\) , ...
If A = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\\
{ - 2}&2
\end{array}} \right] , then An=2kA , where k= ?
A. 2n−1
B. n+1
C. n-1
D. 2(n−1)
Solution
In this question to find the value of k we will find the value of A2, A3 and, A4 with the help of the property of matrix i.e.
\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b; \\\
c&d;
\end{array}} \right]
Now we will find the value of A2 , A3 and, A4 in terms A so that we can compare these equations with the given equation i.e. An=2kA so that we can find the relation between n and k to get the required answer.
Complete step-by-step answer:
Given data: A = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\\
{ - 2}&2
\end{array}} \right]
We know that, \left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b; \\\
c&d;
\end{array}} \right]
Therefore using this property on matrix A
\Rightarrow A = 2\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\\
{ - 1}&1
\end{array}} \right]...........(i)
Multiplying both sides by matrix A
\Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\\
{ - 1}&1
\end{array}} \right]
On multiplication of matrix and simplification we get,
\Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]
On simplifying the elements of the matrix we get,
\Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\\
{ - 2}&2
\end{array}} \right]..................(ii)
Now, we know that \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\\
{ - 2}&2
\end{array}} \right] = A
⇒A2=22A.............(iii)
Now using the property of a matrix i.e. \left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b; \\\
c&d;
\end{array}} \right] in equation(ii)
\Rightarrow {A^2} = {2^3}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\\
{ - 1}&1
\end{array}} \right]
On multiplying equation(i) and equation(ii)
\Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\\
{ - 1}&1
\end{array}} \right]
On multiplication of matrix and simplification
\Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]
On simplifying the elements of the matrix