Question
Question: If \(A = \left[ {\begin{array}{*{20}{c}} 1&4&4 \\\ 4&1&4 \\\ 4&4&1 \end{array}} \ri...
If A = \left[ {\begin{array}{*{20}{c}}
1&4&4 \\\
4&1&4 \\\
4&4&1
\end{array}} \right], then A2−6A=
(a)27I3
(b)5I3
(c)20I3
(d)30I3
Solution
In this particular question use the concept of matrix multiplication which is given as, \left[ {\begin{array}{*{20}{c}} a&b;&c; \\\ d&e;&f; \\\ g&h;&i; \end{array}} \right]\left[ {\begin{array}{*{20}{c}} a&b;&c; \\\ d&e;&f; \\\ g&h;&i; \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a^2} + bd + cg}&{ab + be + ch}&{ac + bf + ci} \\\ {da + ed + fg}&{db + {e^2} + fh}&{dc + ef + fi} \\\ {ga + hd + ig}&{gb + he + ih}&{gc + hf + {i^2}} \end{array}} \right], then use the concept of matrix subtraction, so use these concepts to reach the solution of the question.
Complete step by step answer:
A = \left[ {\begin{array}{*{20}{c}}
1&4&4 \\\
4&1&4 \\\
4&4&1
\end{array}} \right]
Now we have to find out the value of A2−6A=
So, first find out the value of A2
So use the concept of matrix multiplication so we have,
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&4&4 \\\
4&1&4 \\\
4&4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&4&4 \\\
4&1&4 \\\
4&4&1
\end{array}} \right]
Now multiply the matrices we have,
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 \times 1 + 4 \times 4 + 4 \times 4}&{1 \times 4 + 4 \times 1 + 4 \times 4}&{1 \times 4 + 4 \times 4 + 4 \times 1} \\\
{4 \times 1 + 1 \times 4 + 4 \times 4}&{4 \times 4 + 1 \times 1 + 4 \times 4}&{4 \times 4 + 1 \times 4 + 4 \times 1} \\\
{4 \times 1 + 4 \times 4 + 1 \times 4}&{4 \times 4 + 4 \times 1 + 1 \times 4}&{4 \times 4 + 4 \times 4 + 1 \times 1}
\end{array}} \right]
Now simplify it we have,
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{33}&{24}&{24} \\\
{24}&{33}&{24} \\\
{24}&{24}&{33}
\end{array}} \right]................ (1)
Now calculate the value of 6A, so we have,
\Rightarrow 6A = 6\left[ {\begin{array}{*{20}{c}}
1&4&4 \\\
4&1&4 \\\
4&4&1
\end{array}} \right]
Now when 6 multiplied inside the matrix it should be multiplied in all of the elements so we have,