Solveeit Logo

Question

Question: If \(A = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\\ 5&7&9 \\\ { - 2}&1&1 \end{a...

If A = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\\ 5&7&9 \\\ { - 2}&1&1 \end{array}} \right) and B = \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\\ 1&2&0 \\\ 1&3&1 \end{array}} \right) , then verify that
(A+B)T=AT+BT{\left( {A + B} \right)^T} = {A^T} + {B^T}
(AB)T=ATBT{\left( {A - B} \right)^T} = {A^T} - {B^T}

Explanation

Solution

Hint: Here XT{X^T}means the transpose of the matrix XX. First find the transposes of the matrix and then solve accordingly in the problem by comparing the LHS and RHS.

Given that,
A = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\\ 5&7&9 \\\ { - 2}&1&1 \end{array}} \right) and B = \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\\ 1&2&0 \\\ 1&3&1 \end{array}} \right)
Consider A+BA + B
A + B = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\\ 5&7&9 \\\ { - 2}&1&1 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\\ 1&2&0 \\\ 1&3&1 \end{array}} \right) \\\ \\\ A + B = \left( {\begin{array}{*{20}{c}} { - 1 - 4}&{2 + 1}&{3 - 5} \\\ {5 + 1}&{7 + 2}&{9 + 0} \\\ { - 2 + 1}&{1 + 3}&{1 + 1} \end{array}} \right) \\\ \\\ A + B = \left( {\begin{array}{*{20}{c}} { - 5}&3&{ - 2} \\\ 6&9&9 \\\ { - 1}&4&2 \end{array}} \right) \\\
Now consider ABA - B
A - B = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\\ 5&7&9 \\\ { - 2}&1&1 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\\ 1&2&0 \\\ 1&3&1 \end{array}} \right) \\\ \\\ A - B = \left( {\begin{array}{*{20}{c}} { - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\\ {5 - 1}&{7 - 2}&{9 - 0} \\\ { - 2 - 1}&{1 - 3}&{1 - 1} \end{array}} \right) \\\ \\\ A - B = \left( {\begin{array}{*{20}{c}} 3&1&8 \\\ 4&5&9 \\\ { - 3}&{ - 2}&0 \end{array}} \right) \\\
Consider the transpose of (A+B)(A + B) i.e. (A+B)T{(A + B)^T}
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}} { - 5}&3&{ - 2} \\\ 6&9&9 \\\ { - 1}&4&2 \end{array}} \right)^T} \\\ \\\ {(A + B)^T} = \left( {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\\ 3&9&4 \\\ { - 2}&9&2 \end{array}} \right) \\\ \\\ \therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\\ 3&9&4 \\\ { - 2}&9&2 \end{array}} \right)......................\left( 1 \right) \\\
Now consider the transpose of (AB)(A - B) i.e. (AB)T{(A - B)^T}
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}} 3&1&8 \\\ 4&5&9 \\\ { - 3}&{ - 2}&0 \end{array}} \right)^T} \\\ \\\ {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}} 3&4&{ - 3} \\\ 1&5&{ - 2} \\\ 8&9&0 \end{array}} \right) \\\ \\\ \therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}} 3&4&{ - 3} \\\ 1&5&{ - 2} \\\ 8&9&0 \end{array}} \right)........................\left( 2 \right) \\\
In the same way find transpose of AA i.e. AT{A^T}

{A^T} = {\left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\\ 5&7&9 \\\ { - 2}&1&1 \end{array}} \right)^T} \\\ \\\ \therefore {A^T} = \left( {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\\ 2&7&1 \\\ 3&9&1 \end{array}} \right) \\\

Now similarly the transpose of BB i.e. BT{B^T}
{B^T} = {\left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\\ 1&2&0 \\\ 1&3&1 \end{array}} \right)^T} \\\ \\\ \therefore {B^T} = \left( {\begin{array}{*{20}{c}} { - 4}&1&1 \\\ 1&2&3 \\\ { - 5}&0&1 \end{array}} \right) \\\
Now find AT+BT{A^T} + {B^T} i.e.

{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\\ 2&7&1 \\\ 3&9&1 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 4}&1&1 \\\ 1&2&3 \\\ { - 5}&0&1 \end{array}} \right) \\\ \\\ {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}} { - 1 - 4}&{5 + 1}&{ - 2 + 1} \\\ {2 + 1}&{7 + 2}&{1 + 3} \\\ {3 - 5}&{9 + 0}&{1 + 1} \end{array}} \right) \\\ \\\ \therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\\ 3&9&4 \\\ { - 2}&9&2 \end{array}} \right)..................................\left( 3 \right) \\\

Now find ATBT{A^T} - {B^T} i.e.

{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\\ 2&7&1 \\\ 3&9&1 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 4}&1&1 \\\ 1&2&3 \\\ { - 5}&0&1 \end{array}} \right) \\\ \\\ {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} { - 1 + 4}&{5 - 1}&{ - 2 - 1} \\\ {2 - 1}&{7 - 2}&{1 - 3} \\\ {3 + 5}&{9 - 0}&{1 - 1} \end{array}} \right) \\\ \\\ \therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} 3&4&{ - 3} \\\ 1&5&{ - 2} \\\ 8&9&0 \end{array}} \right)................................................\left( 4 \right) \\\

From Equation (1)\left( 1 \right)and Equation (3)\left( 3 \right)we have
(A+B)T=AT+BT{\left( {A + B} \right)^T} = {A^T} + {B^T}
From Equation (2)\left( 2 \right)and Equation (4)\left( 4 \right) we have
(AB)T=ATBT{\left( {A - B} \right)^T} = {A^T} - {B^T}
Hence proved that (A+B)T=AT+BT{\left( {A + B} \right)^T} = {A^T} + {B^T}
(AB)T=ATBT{\left( {A - B} \right)^T} = {A^T} - {B^T}

Note: From this problem it is clear that (A+B)T=AT+BT{\left( {A + B} \right)^T} = {A^T} + {B^T}is the property of “Transpose of a sum of matrices” and (AB)T=ATBT{\left( {A - B} \right)^T} = {A^T} - {B^T}is the property of “Transpose of subtraction of matrices”.