Question
Question: If \(A = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\\ 5&7&9 \\\ { - 2}&1&1 \end{a...
If A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\\
5&7&9 \\\
{ - 2}&1&1
\end{array}} \right) and B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\\
1&2&0 \\\
1&3&1
\end{array}} \right) , then verify that
(A+B)T=AT+BT
(A−B)T=AT−BT
Solution
Hint: Here XTmeans the transpose of the matrix X. First find the transposes of the matrix and then solve accordingly in the problem by comparing the LHS and RHS.
Given that,
A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\\
5&7&9 \\\
{ - 2}&1&1
\end{array}} \right) and B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\\
1&2&0 \\\
1&3&1
\end{array}} \right)
Consider A+B
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\\
5&7&9 \\\
{ - 2}&1&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\\
1&2&0 \\\
1&3&1
\end{array}} \right) \\\
\\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{2 + 1}&{3 - 5} \\\
{5 + 1}&{7 + 2}&{9 + 0} \\\
{ - 2 + 1}&{1 + 3}&{1 + 1}
\end{array}} \right) \\\
\\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\\
6&9&9 \\\
{ - 1}&4&2
\end{array}} \right) \\\
Now consider A−B
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\\
5&7&9 \\\
{ - 2}&1&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\\
1&2&0 \\\
1&3&1
\end{array}} \right) \\\
\\\
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\\
{5 - 1}&{7 - 2}&{9 - 0} \\\
{ - 2 - 1}&{1 - 3}&{1 - 1}
\end{array}} \right) \\\
\\\
A - B = \left( {\begin{array}{*{20}{c}}
3&1&8 \\\
4&5&9 \\\
{ - 3}&{ - 2}&0
\end{array}} \right) \\\
Consider the transpose of (A+B) i.e. (A+B)T
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\\
6&9&9 \\\
{ - 1}&4&2
\end{array}} \right)^T} \\\
\\\
{(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\\
3&9&4 \\\
{ - 2}&9&2
\end{array}} \right) \\\
\\\
\therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\\
3&9&4 \\\
{ - 2}&9&2
\end{array}} \right)......................\left( 1 \right) \\\
Now consider the transpose of (A−B) i.e. (A−B)T
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}}
3&1&8 \\\
4&5&9 \\\
{ - 3}&{ - 2}&0
\end{array}} \right)^T} \\\
\\\
{\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\\
1&5&{ - 2} \\\
8&9&0
\end{array}} \right) \\\
\\\
\therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\\
1&5&{ - 2} \\\
8&9&0
\end{array}} \right)........................\left( 2 \right) \\\
In the same way find transpose of A i.e. AT
Now similarly the transpose of B i.e. BT
{B^T} = {\left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\\
1&2&0 \\\
1&3&1
\end{array}} \right)^T} \\\
\\\
\therefore {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\\
1&2&3 \\\
{ - 5}&0&1
\end{array}} \right) \\\
Now find AT+BT i.e.
Now find AT−BT i.e.
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\\ 2&7&1 \\\ 3&9&1 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 4}&1&1 \\\ 1&2&3 \\\ { - 5}&0&1 \end{array}} \right) \\\ \\\ {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} { - 1 + 4}&{5 - 1}&{ - 2 - 1} \\\ {2 - 1}&{7 - 2}&{1 - 3} \\\ {3 + 5}&{9 - 0}&{1 - 1} \end{array}} \right) \\\ \\\ \therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} 3&4&{ - 3} \\\ 1&5&{ - 2} \\\ 8&9&0 \end{array}} \right)................................................\left( 4 \right) \\\From Equation (1)and Equation (3)we have
(A+B)T=AT+BT
From Equation (2)and Equation (4) we have
(A−B)T=AT−BT
Hence proved that (A+B)T=AT+BT
(A−B)T=AT−BT
Note: From this problem it is clear that (A+B)T=AT+BTis the property of “Transpose of a sum of matrices” and (A−B)T=AT−BTis the property of “Transpose of subtraction of matrices”.