Question
Question: If \[A = \left| {\begin{array}{*{20}{c}} 1&0 \\\ 1&1 \end{array}} \right|\]and\[I = \lef...
If A = \left| {\begin{array}{*{20}{c}}
1&0 \\\
1&1
\end{array}} \right|andI = \left| {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right|, then which one of the following holds for alln⩾1, by the principle of mathematical induction
A) An=nA−(n−1)I
B) An=2n−1A−(n−1)I
C) An=nA+(n−1)I
D) An=2n−1A+(n−1)I
Solution
Use mathematical induction theorem, which is a mathematical technique that is used to prove a statement, a formula, or a theorem is true for natural value.
In this question, start from checking the options whether the given equation satisfies the given matrix, by finding the value ofAnand then checking for R.H.S of the equation.
A matrix is a rectangular array of tables, symbols, or expressions, arranged in rows and columns.
Complete step by step answer:
1&0 \\\ 1&1 \end{array}} \right|$$ $$I = \left| {\begin{array}{*{20}{c}} 1&0 \\\ 0&1 \end{array}} \right|$$ In the given options, we can see $${A^n}$$ common for every option; hence find $${A^n}$$A = \left| {\begin{array}{{20}{c}}
1&0 \\
1&1
\end{array}} \right| \\
{A^2} = \left| {\begin{array}{{20}{c}}
1&0 \\
1&1
\end{array}} \right|\left| {\begin{array}{{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{{20}{c}}
{1 + 0}&0 \\
{1 + 1}&{0 + 1}
\end{array}} \right| = \left| {\begin{array}{{20}{c}}
1&0 \\
2&1
\end{array}} \right| \\
{A^3} = A{A^2} = \left| {\begin{array}{{20}{c}}
1&0 \\
2&1
\end{array}} \right|\left| {\begin{array}{{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{{20}{c}}
{1 + 0}&{0 + 0} \\
{2 + 1}&{0 + 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
3&1
\end{array}} \right| \\
. \\
. \\
. \\