Question
Question: If \[A = \left[ {\begin{array}{*{20}{c}} 1 \\\ 3 \end{array}\begin{array}{*{20}{c}} ...
If A = \left[ {\begin{array}{*{20}{c}}
1 \\\
3
\end{array}\begin{array}{*{20}{c}}
2 \\\
{ - 1}
\end{array}\begin{array}{*{20}{c}}
x \\\
2
\end{array}} \right] and B = \left[ {\begin{array}{*{20}{c}}
y \\\
x \\\
1
\end{array}} \right]be such that AB = \left[ {\begin{array}{*{20}{c}}
6 \\\
8
\end{array}} \right]then:
A. y=2x
B. y=−2x
C. y=x
D. y=−x
Solution
We use the concept of matrix multiplication and multiply A and B and then equate the elements to the given elements of AB matrix. Find both the values of x and y and relate them for the answer.
- Two matrices can be multiplied if and only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Complete step-by-step answer:
Here A = \left[ {\begin{array}{*{20}{c}}
1 \\\
3
\end{array}\begin{array}{*{20}{c}}
2 \\\
{ - 1}
\end{array}\begin{array}{*{20}{c}}
x \\\
2
\end{array}} \right] is a matrix of order 2×3 which means it has three columns
and B = \left[ {\begin{array}{*{20}{c}}
y \\\
x \\\
1
\end{array}} \right]is a matrix of order 3×1which means it has three number of rows.
Since number of columns of A is equal to number of rows in B, we can apply matrix multiplication to AB
Now we calculate the product of two matrices A and B
\Rightarrow AB = \left[ {\begin{array}{{20}{c}}
{y + 2x + x} \\
{3y - x + 2}
\end{array}} \right] \\
\Rightarrow AB = \left[ {\begin{array}{{20}{c}}
{y + 3x} \\
{3y - x + 2}
\end{array}} \right] \\
3y - x = 8 - 2 \\
3y - x = 6 \\
\Rightarrow 3(6 - 3x) - x = 6 \\
\Rightarrow 18 - 9x - x = 6 \\
\Rightarrow - 10x + 18 = 6 \\
\Rightarrow - 10x = 6 - 18 \\
\Rightarrow - 10x = - 12 \\
\Rightarrow y = 6 - 3(\dfrac{{12}}{{10}}) \\
\Rightarrow y = 6 - \dfrac{{36}}{{10}} \\
\Rightarrow y = \dfrac{{60 - 36}}{{10}} \\
\Rightarrow y = \dfrac{{24}}{{10}} \\