Solveeit Logo

Question

Question: If A\(\left( {4,0} \right)\) and B\(\left( { - 4,0} \right)\) are two given points. A variable point...

If A(4,0)\left( {4,0} \right) and B(4,0)\left( { - 4,0} \right) are two given points. A variable point P is such that PA+PB=10, then show that equation of locus of P is x225+y29=1\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1.

Explanation

Solution

In this type of question we will make use of distance between two points formula i.e., If A(x1,y1)({x_1},{y_1}) and B(x2,y2)\left( {{x_2},{y_2}} \right) then the distance between these two points will be, AB=(x2x1)2+(y2y1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} and also we also be using the square of difference of two variables i.e.,(ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}.

Complete answer:
Step 1:
Given two points are A(4,0)\left( {4,0} \right) and B(4,0)\left( { - 4,0} \right) and P is variable point such that PA+PB=10.
So, from the given data sum of distance between PA and PB is 10, and we have show that the locus of the point P will be x225+y29=1\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1.
We have to use the point distance formula i.e., If A(x1,y1)({x_1},{y_1}) and B(x2,y2)\left( {{x_2},{y_2}} \right) then the distance between these two points will be,
AB=(x2x1)2+(y2y1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .
Step 2:
Now here given that PA+PB=10, so let the point P be(x,y)\left( {x,y} \right).
PA+PB=10
By taking PB to R.H.S ,this can be rewritten as,
PA=10-PB----(1)
So, let's take L.H.S ,here PA=(4x)2+(0y)2= \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}},
Now PB=(4x)2+(0y)2= \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}},
Step 3:
Now substituting these values in (1) we get,
(4x)2+(0y)2=10(4x)2+(0y)2\Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}}
Now doing the subtraction inside the square root we get,
(4x)2+(y)2=10(4x)2+(y)2\Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}}
Now squaring on both sides we get,
((4x)2+(y)2)2=(10(4x)2+(y)2)2\Rightarrow {\left( {\sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2} = {\left( {10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2}
Now removing the square root on R.H.S and applying difference of two variables on L.H.S we get,
(4x)2+y2=102+((4x)2+y2)22(10)((4x)2+(y)2)\Rightarrow {\left( {4 - x} \right)^2} + {y^2} = {10^2} + {\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2} - 2\left( {10} \right)\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)
Now simplifying both the sides we get,
16+x28x+y2=10020(4x)2+y2+(4x)2+y2\Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + {\left( { - 4 - x} \right)^2} + {y^2}
Simplifying on L.H.S we get,
16+x28x+y2=10020(4x)2+y2+16+8x+x2+y2\Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 16 + 8x + {x^2} + {y^2}
Now eliminating the like terms on both the sides we get,
8x=10020(4x)2+y2+8x\Rightarrow - 8x = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x,
Now taking all terms to one side we get,
0=10020(4x)2+y2+8x+8x\Rightarrow 0 = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x + 8x
Now again simplifying we get,
x225+y29=1\Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1
Now take the square root term on L.H.S we get,
16x+100=20(4x)2+y2\Rightarrow 16x + 100 = 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}}
Now again squaring on both sides we get,
(16x+100)2=(20(4x)2+y2)2\Rightarrow {\left( {16x + 100} \right)^2} = {\left( {20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2}
Now applying the sum of squares of two variables on L.H.S and squaring on both sides we get,
256x2+3200x+10000=(400((4x)2+y2))\Rightarrow 256{x^2} + 3200x + 10000 = \left( {400\left( {{{\left( { - 4 - x} \right)}^2} + {y^2}} \right)} \right)
Again simplifying the left hand side we get,
256x2+3200x+10000=400(16+x2+8x+y2)\Rightarrow 256{x^2} + 3200x + 10000 = 400\left( {16 + {x^2} + 8x + {y^2}} \right)
Now multiplying 400 on R.H.S we get,
256x2+3200x+10000=6400+400x2+3200x+400y2\Rightarrow 256{x^2} + 3200x + 10000 = 6400 + 400{x^2} + 3200x + 400{y^2}
Now eliminating like terms on both the sides we get,
256x2+10000=6400+400x2+400y2\Rightarrow 256{x^2} + 10000 = 6400 + 400{x^2} + 400{y^2}
Now taking all xxterms to R.H.S and constant term to L.H.S we get,
100006400=400x2+400y2256x2\Rightarrow 10000 - 6400 = 400{x^2} + 400{y^2} - 256{x^2}
Now simplifying we get,
144x2+400y2=3600\Rightarrow 144{x^2} + 400{y^2} = 3600
Now taking R.H.S to L.H.S we get,
144x23600+400y23600=1\Rightarrow \dfrac{{144{x^2}}}{{3600}} + \dfrac{{400{y^2}}}{{3600}} = 1
Now again simplifying we get,
x225+y29=1\Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1.
Thus the equation of locus of point P will be x225+y29=1\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1.
Hence Proved.

If A(4,0)\left( {4,0} \right) and B(4,0)\left( { - 4,0} \right) are two given points. A variable point P is such that PA+PB=10, then the equation of locus of P isx225+y29=1\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1.

Note:
The Distance Formula is a useful tool in finding the distance between two points which can be arbitrarily represented as points (x1,y1)({x_1},{y_1})and(x2,y2)\left( {{x_2},{y_2}} \right), The Distance Formula itself is actually derived from the Pythagorean Theorem which is a2+b2=c2{a^2} + {b^2} = {c^2} whereccis the longest side of a right triangle (also known as the hypotenuse) and aaandbb are the other shorter sides (known as the legs of a right triangle). The very essence of the Distance Formula is to calculate the length of the hypotenuse of the right triangle which is represented by the lettercc.