Solveeit Logo

Question

Question: If \[A = \left\\{ {1,2,3,..........,9} \right\\}\] and \[R\] be the relation in \[A \times A\] defin...

If A = \left\\{ {1,2,3,..........,9} \right\\} and RR be the relation in A×AA \times A defined by (a,b)R(c,d)\left( {a,b} \right)R\left( {c,d} \right). If a+d=b+ca + d = b + c for (a,b),(c,d)\left( {a,b} \right),\left( {c,d} \right) in A×AA \times A. Prove that RR is an equivalence relation. Also, obtain the equivalence class [(2,5)]\left[ {\left( {2,5} \right)} \right].

Explanation

Solution

Hint: To prove RR is an equivalence relation, first we have to prove RR is Reflexive, Symmetric and Transitive, then the relation RR is said to be an Equivalence relation. So, use this concept to reach the solution of the given problem.

Complete step-by-step answer:
Given A = \left\\{ {1,2,3,..........,9} \right\\}
And RR is the relation in A×AA \times A
Case 1: To prove RR is Reflexive
Given (a,b)R(c,d)\left( {a,b} \right)R\left( {c,d} \right) if (a,b)(c,d)AA\left( {a,b} \right)\left( {c,d} \right) \in A \in A
a+d=b+ca + d = b + c
Consider, (a,b)R(a,b)\left( {a,b} \right)R\left( {a,b} \right) if (a,b)AA\left( {a,b} \right) \in A \in A
a+b=b+aa + b = b + a
Hence, RR is Reflexive
Case 2: To prove RR is symmetric
Consider (a,b)R(c,d)\left( {a,b} \right)R\left( {c,d} \right) given by (a,b)(c,d)A×A\left( {a,b} \right)\left( {c,d} \right) \in A \times A
a+d=b+cc+b=a+da + d = b + c \Rightarrow c + b = a + d
(c,a)R(a,b)\therefore \left( {c,a} \right)R\left( {a,b} \right)
Hence, RR is symmetric
Case 3: To prove RR is transitive
Let (a,b)R(c,d)\left( {a,b} \right)R\left( {c,d} \right) and (c,d)R(e,f)\left( {c,d} \right)R\left( {e,f} \right)
(a,b),(c,d),(c,d)A×A\left( {a,b} \right),\left( {c,d} \right),\left( {c,d} \right) \in A \times A
a+b=b+ca + b = b + c and c+f=d+ec + f = d + e
a+b=b+ca + b = b + c

ac=bd..........................(1) c+f=d+e..........................(2)  \Rightarrow a - c = b - d..........................\left( 1 \right) \\\ \Rightarrow c + f = d + e..........................\left( 2 \right) \\\

Adding equation (1) and (2) we get
(a,b)R(e,f)\left( {a,b} \right)R\left( {e,f} \right)
Hence, RR is transitive.
As RR is reflexive, symmetric and transitive we can say that RR is an equivalence relation.
Now, we select aa and bb from set A = \left\\{ {1,2,3,..........,9} \right\\} such that 2+b=5+a2 + b = 5 + a
So, b=a+3b = a + 3
Let us consider (1,4)\left( {1,4} \right)
If (2,5)R(1,4)\left( {2,5} \right)R\left( {1,4} \right) then 2+4=5+12 + 4 = 5 + 1
Thus, [(2,5)=(1,4)(2,5),(3,6)(4,7),(5,8)(6,9)]\left[ {\left( {2,5} \right) = \left( {1,4} \right)\left( {2,5} \right),\left( {3,6} \right)\left( {4,7} \right),\left( {5,8} \right)\left( {6,9} \right)} \right] is the equivalent class under relation RR.

Note: A relation RR on a set AA is called reflexive if (a,a)R\left( {a,a} \right) \in R for every element aAa \in A. A relation RR on a set AA is called symmetric if (b,a)R\left( {b,a} \right) \in R whenever (a,b)R\left( {a,b} \right) \in R, for all a,bAa,b \in A. A relation RR on a set AA is called transitive if whenever (a,b)R\left( {a,b} \right) \in R and (b,c)R\left( {b,c} \right) \in R, then (a,c)R\left( {a,c} \right) \in R, for all a,b,cAa,b,c \in A.