Solveeit Logo

Question

Mathematics Question on Vector Algebra

If A(l, –1, 2), B(5, 7, –6), C(3, 4, –10) and D(–l, –4, –2) are the vertices of a quadrilateral ABCD, then its area is :

A

122912 \sqrt{29}

B

242924 \sqrt{29}

C

24724 \sqrt7

D

48748 \sqrt7

Answer

122912 \sqrt{29}

Explanation

Solution

Given points:

A(1,1,2),B(5,7,6),C(3,4,10),D(1,4,2)A(1, -1, 2), \, B(5, 7, -6), \, C(3, 4, -10), \, D(-1, -4, -2)

The area is given by:

Area=12AC×BD=12(2i+5j12k)×(6i+11j4k)\text{Area} = \frac{1}{2} | \vec{AC} \times \vec{BD} | = \frac{1}{2} | (2i + 5j - 12k) \times (6i + 11j - 4k) |

Calculating the cross product:

=1212i64j8k= \frac{1}{2} | 12i - 64j - 8k |

Taking the magnitude:

=12(12)2+(64)2+(8)2= \frac{1}{2} \sqrt{(12)^2 + (-64)^2 + (-8)^2}

=12144+4096+64= \frac{1}{2} \sqrt{144 + 4096 + 64}

=124304= \frac{1}{2} \sqrt{4304}

=12×21076= \frac{1}{2} \times 2 \sqrt{1076}

=1076= \sqrt{1076}

Therefore:

Area=1229\text{Area} = 12 \sqrt{29}