Solveeit Logo

Question

Mathematics Question on binomial expansion formula

If a'a' is the middle term in the expansion of (2x3y)8(2x - 3y)^8 and b,cb, c are the middle terms in the expansion of (3x+4y)7(3x + 4y)^7 , then the value of b+ca\frac{b +c}{a} ,when x=2x = 2 and y=3y = 3, is

A

12\frac{1}{2}

B

23\frac{2}{3}

C

11

D

22

Answer

22

Explanation

Solution

In the expansion of (2x3y)8(2 x-3 y)^{8} middle term is 55 th term.
a=8C4(2x)4(3y)4(1)4\Rightarrow a ={ }^{8} C_{4}(2 x)^{4}(3 y)^{4}(-1)^{4}
=8!4!4!×24×34×x4y4=\frac{8 !}{4 ! 4 !} \times 2^{4} \times 3^{4} \times x^{4} y^{4}
=70×24×34×24×34(x=2,y=3)=70 \times 2^{4} \times 3^{4} \times 2^{4} \times 3^{4}(\because x=2, y=3)
Similarly, in the expansion of (3x+4y)7,4(3 x+4 y)^{7}, 4 th and 55 th terms are middle terms.
b=7C3(3x)4(4y)3=35×37×210\therefore b={ }^{7} C_{3}(3 x)^{4}(4 y)^{3}=35 \times 3^{7} \times 2^{10}
and c=7C4(3x)3(4y)4=35×37×211c={ }^{7} C_{4}(3 x)^{3}(4 y)^{4}=35 \times 3^{7} \times 2^{11}
Now, b+c=35×37×210+35×37×211b + c = 35 \times 3^7 \times 2^{10} + 35 \times 3^7 \times 2^{11}
=35×37×210(1+2)=35×38×210= 35 \times 3^7 \times 2^{10} (1 + 2) = 35 \times 3^8 \times 2^{10}
b+ca=35×38×21070×28×38=21029=2\therefore \frac{b + c}{a} = \frac{35 \times 3^8 \times 2^{10}}{70 \times 2^8 \times 3^8} = \frac{2^{10}}{2^9} = 2