Solveeit Logo

Question

Question: If A is the area and 2s the sum of the sides of a triangle, then...

If A is the area and 2s the sum of the sides of a triangle, then

A

A ≤s253\frac { s ^ { 2 } } { 5 \sqrt { 3 } }

B

A ≤s233\frac { s ^ { 2 } } { 3 \sqrt { 3 } }

C

A >s23\frac { s ^ { 2 } } { \sqrt { 3 } }

D

None of these

Answer

A ≤s233\frac { s ^ { 2 } } { 3 \sqrt { 3 } }

Explanation

Solution

We have 2s = a + b + c, A2 = s(s – a) (s – b) (s – c).

Now A.M ≥ G.M

≥ [s(s – a) (s – b)

(s – c)]1/4

4s2s4\frac { 4 s - 2 s } { 4 }≥ [A2]1/4≥ A1/2 ⇒ A ≤.

Also (sa)+(sb)+(sc)3\frac { ( \mathrm { s } - \mathrm { a } ) + ( \mathrm { s } - \mathrm { b } ) + ( \mathrm { s } - \mathrm { c } ) } { 3 } ≥ [(s – a) (s – b) (s – c)]1/3

or s3[A2s]1/3\frac { s } { 3 } \geq \left[ \frac { A ^ { 2 } } { s } \right] ^ { 1 / 3 } or A2ss327\frac { A ^ { 2 } } { s } \leq \frac { s ^ { 3 } } { 27 } ⇒ A ≤ s233\frac { s ^ { 2 } } { 3 \sqrt { 3 } }