Solveeit Logo

Question

Question: If A is square matrix and $A^2 + I = 2A$, then $A^9 =$...

If A is square matrix and A2+I=2AA^2 + I = 2A, then A9=A^9 =

A

8A27I8A^2 - 7I

B

9A+8I9A + 8I

C

9A8I9A - 8I

D

8A2+7I8A^2 + 7I

Answer

9A - 8I

Explanation

Solution

Solution:

We are given:

A2+I=2AA22A+I=0(AI)2=0.A^2 + I = 2A \quad \Rightarrow \quad A^2 - 2A + I = 0 \quad \Rightarrow \quad (A-I)^2 = 0.

This means that AIA-I is nilpotent of index 2.

To find A9A^9, first note from the equation:

A2=2AI.A^2 = 2A - I.

We can compute:

A3=AA2=A(2AI)=2A2A=2(2AI)A=4A2IA=3A2I.\begin{aligned} A^3 &= A \cdot A^2 = A(2A-I)=2A^2-A\\ &=2(2A-I)-A\\ &=4A-2I-A\\ &=3A-2I. \end{aligned}

One can see a pattern: assume that

An=nA(n1)I.A^n = nA-(n-1)I.

This holds for n=1n=1 and n=2n=2. Assuming it holds for nn, then

An+1=AAn=A(nA(n1)I)=nA2(n1)A=n(2AI)(n1)A=(2n(n1))AnI=(n+1)AnI.\begin{aligned} A^{n+1} &= A \cdot A^n = A(nA-(n-1)I)\\ &= nA^2 - (n-1)A\\ &= n(2A-I) - (n-1)A\\ &= (2n-(n-1))A - nI\\ &= (n+1)A - nI. \end{aligned}

Thus by induction, the pattern is valid.

For n=9n=9:

A9=9A8I.A^9 = 9A-8I.

So, the correct option is 9A - 8I.


Core Explanation:

  1. Rearranged given equation to A22A+I=0A^2-2A+I=0 \Rightarrow (AI)2=0(A-I)^2=0.
  2. Found by induction that An=nA(n1)IA^n=nA-(n-1)I.
  3. Substituted n=9n=9 to get A9=9A8IA^9=9A-8I.