Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If aa is positive and if AA and GG are the arithmetic mean and the geometric mean of the roots of x22ax+a2=0{{x}^{2}}-2ax+{{a}^{2}}=0 respectively, then

A

A=GA=G

B

A=2GA=2G

C

2A=G2A=G

D

A2=G{{A}^{2}}=G

Answer

A=GA=G

Explanation

Solution

Let α\alpha and β\beta are the roots of the equation x22ax+a2=0.{{x}^{2}}-2ax+{{a}^{2}}=0.
\therefore α+β=2a\alpha +\beta =2a and αβ=a2\alpha \beta ={{a}^{2}} ...(i)
Since, A and G are the arithmetic and geometric mean of the roots. i.e,
A=α+β2A=\frac{\alpha +\beta }{2} and G=αβG=\sqrt{\alpha \beta }
\therefore From E (i), α+β2=a\frac{\alpha +\beta }{2}=a and αβ=a2\alpha \beta ={{a}^{2}}
\Rightarrow A=aA=a and G2=a2{{G}^{2}}={{a}^{2}}
\Rightarrow G2=A2G=A{{G}^{2}}={{A}^{2}}\Rightarrow G=A