Solveeit Logo

Question

Question: If A is not an integral multiple of $\pi$, prove that $\cos A \cdot \cos 2A \cdot \cos 4A \cdot \cos...

If A is not an integral multiple of π\pi, prove that cosAcos2Acos4Acos8A=sin16A16sinA\cos A \cdot \cos 2A \cdot \cos 4A \cdot \cos 8A = \frac{\sin 16A}{16\sin A} and hence deduce that cos2π15cos4π15cos8π15cos16π15=116\cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15} \cdot \cos \frac{16\pi}{15} = \frac{1}{16}

Answer

The identity cosAcos2Acos4Acos8A=sin16A16sinA\cos A \cdot \cos 2A \cdot \cos 4A \cdot \cos 8A = \frac{\sin 16A}{16\sin A} is proven. Using this identity, it is deduced that cos2π15cos4π15cos8π15cos16π15=116\cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15} \cdot \cos \frac{16\pi}{15} = \frac{1}{16}.

Explanation

Solution

The proof of the identity cosAcos2Acos4Acos8A=sin16A16sinA\cos A \cdot \cos 2A \cdot \cos 4A \cdot \cos 8A = \frac{\sin 16A}{16\sin A} is achieved by multiplying the LHS by 16sinA16sinA\frac{16\sin A}{16\sin A} and repeatedly applying the double angle formula for sine (2sinxcosx=sin2x2\sin x \cos x = \sin 2x) to simplify the numerator. The condition that A is not an integral multiple of π\pi ensures sinA0\sin A \neq 0.

For the deduction, we identify A=2π15A = \frac{2\pi}{15} from the product cos2π15cos4π15cos8π15cos16π15\cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15} \cdot \cos \frac{16\pi}{15}, as the angles are in the ratio 1:2:4:81:2:4:8. Substituting this AA into the proven identity and simplifying sin(32π15)\sin(\frac{32\pi}{15}) using periodicity (sin(2π+x)=sinx\sin(2\pi+x)=\sin x) leads to the result 116\frac{1}{16}.