Solveeit Logo

Question

Question: If a is not a multiple of \(\pi \), then show that the function\(g\left( x \right)=\csc x\) is diffe...

If a is not a multiple of π\pi , then show that the functiong(x)=cscxg\left( x \right)=\csc x is differentiable at a and g(a)=cscacotag'\left( a \right)=-\csc a\cot a. In general, g(x)=cscxcotxg'\left( x \right)=-\csc x\cot x for all xx \ne nπn\pi , where nZn\in Z.

Explanation

Solution

Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as. If any function f(x)f\left( x \right)is differentiable at point ‘cc’ then LHD and RHD should be equal which are given by relation

Complete step-by-step answer:
LHD =limλcf(x)f(c)xc=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c} and RHD =limxc+f(x)f(c)xc=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}

As we know that any function f(x)f\left( x \right)is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to f(c)f'\left( c \right) as well.
LHD and RHD of function f(x)f\left( x \right) at any point ‘c’ can be given as
LHD =limλcf(x)f(c)xc=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c} ………………………………………………(i)
RHD =limxc+f(x)f(c)xc=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c} ………………………………………………(ii)
Hence, any function f(x)f\left( x \right)is differentiable at point ‘c’ if
LHD ==RHD =f(c)=f'\left( c \right) ……………………………………………………(iii)
Now coming to the question, we have a functiong(x)=cscxg\left( x \right)=\csc x where we need to prove it is differentiable at x=ax=awhere aais not multiple of π\pi i.e. aa \ne nπn\pi .
And, we have given in question that g(x)=cscxcotxg'\left( x \right)=-\csc x\cot x, so g(a)=cscacotag'\left( a \right)=-\csc a\cot a
For all xx \ne nπn\pi , where nZn\in Z.
So, let us calculate LHD and RHD of g(x)=cscxg\left( x \right)=\csc x at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD =limxag(x)g(a)xa=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}
Since, g(x)=cscxg\left( x \right)=\csc x, so , g(a)=cscag\left( a \right)=\csc a
Hence, we get
LHD =limxacscxcscaxa=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}
Now, we can replace a{{a}^{-}} by (ah)\left( a-h \right) where h0h\to 0, so, we get
LHD =limh0csc(ah)cscaaha=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}
or LHD =limh0csc(ah)cscah=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}
We know that cscx=1sinx\csc x=\dfrac{1}{\sin x}. Hence, we get
LHD =limh0 1h[1sin(ah)1sina]=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]
LHD =limh0 1h[sinasin(ah)sin(ah)sina]=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]
Now, we can use trigonometric identity as
sinCsinD=2sin(CD2)cos(C+D2)\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)
Hence, above equation becomes
LHD =limh0 1h[2sin(aa+h2)cos(a+h2)sin(ah)sina]=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]
LHD =limh0 1h[2sin(h2)cos(2ah2)sin(ah)sina]=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]
or
LHD =limh0 sin(h2)(h2)(cos(2ah2)sin(ah)sina)=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)
Now, we can use relation
limx0 sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1 with limh0sin(h2)h2\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}},
We get after applying limit h0h\to 0
LHD =1cosasinacosa=-1\dfrac{\cos a}{\sin a\cos a}
We know that cosasina\dfrac{\cos a}{\sin a} == cota\cot aand 1sina=csca\dfrac{1}{\sin a}=\csc a, Hence, we get
LHD =cotacsca=-\cot a\csc a ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD =limxa+g(x)g(a)xa=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}
As we have g(x)=cscxg\left( x \right)=\csc x, so g(a)=cscag\left( a \right)=\csc a
Hence, we get
RHD =limxa+cscxcscaxa=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}
Now replace a+{{a}^{+}} by a+ha+h where h0h\to 0
Hence, we get
RHD =limh0csc(a+h)cscaa+ha=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}
or RHD =limh0csc(a+h)cscah=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}
We know that cscx=1sinx\csc x=\dfrac{1}{\sin x}, Hence, we get
RHD =limh0 [1sin(a+h)1sina]h=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}
RHD =limh0 1h[sinasin(a+h)sin(a+h)sina]=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]
Now, we can use trigonometric identity as
sinCsinD=2sin(CD2)cos(C+D2)\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)
Hence, RHD can be re-written as
RHD =limh0 1h[2sin(aah2)cos(a+a+h2)sin(a+h)sina]=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]
RHD =limh0 1h[2sin(h2)cos(2a+h2)sin(a+h)sina]=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]
or
RHD =limh0 [(sin(h2)(h2))cos(2a+h2)sin(a+h)sina]=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]
where, we know sin(x)=sinx\sin \left( -x \right)=-\sin x
Now, using the relation limx0 sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1, we get after putting limit h0h\to 0 to RHD;
RHD =[(1)cosasinasina]=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]
Hence, RHD =cotacsca=-\cot a\csc a …………………………………………(v)
As, it is given that g(x)=cotxcscxg\left( x \right)=-\cot x\csc x , and henceg(a)=cotacscag'\left( a \right)=-\cot a\csc a, Therefore, we get
LHD = RHD =g(a)g'\left( a \right)
Hence, the given functiong(x)=cscxg\left( x \right)=\csc x is differentiable at x=ax=a from equation (iii) where aa \ne nπn\pi .
Note: Don’t get confused with the term statement ‘xx \ne nπn\pi ’ or ‘a is not multiple of π\pi ’. It is used because we cannot put x=nπx=n\pi in cscx\csc x. It will give positive, infinite or negative for xnπ+x\to n{{\pi }^{+}} or xnπx\to n{{\pi }^{-}}. Hence cscx\csc x is not continuous at x=nπx=n\pi . That’s why we cannot put x=nπx=n\pi .
One can get confused with the identity sinCsinD\sin C-\sin D , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form 00\dfrac{0}{0}. So, we need to use identities; we can use L’ Hospital as well.