Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If A is matrix of order 3x3, then (A2)1(A^2)^{-1} is equal to

A

(A2)2(-A^2)^2

B

A2A^2

C

(A1)2(A^{-1})^2

D

(A)2(-A)^{-2}

Answer

(A1)2(A^{-1})^2

Explanation

Solution

For a square matrix A, if A has an inverse, denoted as A1A^{-1}, then AA1=IA \cdot A^{-1} = I, where I is the identity matrix.
Now, let's evaluate (A2)1(A^2)^{-1}
(A2)1=(AA)1(A^2)^{-1} = (A \cdot A)^{-1}
According to the property of matrix inverses, (AB)1=B1A1(A \cdot B)^{-1} = B^{-1} \cdot A^{-1} for matrices A and B.
Applying this property to (AA)1(A \cdot A)^{-1}, we get:
(AA)1=A1A1(A \cdot A)^{-1} = A^{-1} \cdot A^{-1}
Therefore,(A2)1=A1A1(A^2)^{-1} = A^{-1} \cdot A^{-1} (option C).