Solveeit Logo

Question

Question: If A is an \(n \times n\) non-singular matrix, then \(\left| {AdjA} \right|\) is: A. \[{\left| A \...

If A is an n×nn \times n non-singular matrix, then AdjA\left| {AdjA} \right| is:
A. An{\left| A \right|^n}
B. An+1{\left| A \right|^{n + 1}}
C. An1{\left| A \right|^{n - 1}}
D. An2{\left| A \right|^{n - 2}}

Explanation

Solution

It is given in the question that if A is an n×nn \times n non-singular matrix.
Then, what is the value of adjA\left| {adjA} \right| . The matrix A is nonsingular if and only if A0\left| A \right| \ne 0 .
First, we know that A(adjA)=AIA\left( {adjA} \right) = \left| A \right|I . Then, we will assume A=k\left| A \right| = k .
Finally, after using the properties of determinants we will get the answer.
Properties:
AB=AB\left| {AB} \right| = \left| A \right|\left| B \right|
kA=knA\left| {kA} \right| = {k^n}A

Complete step-by-step answer:
It is given in the question that if A is an n×nn \times n non-singular matrix.
Then, what is the value of adjA\left| {adjA} \right|.
The matrix A is non-singular if and only if A0\left| A \right| \ne 0 .
Since, we know that A(adjA)=AIA\left( {adjA} \right) = \left| A \right|I (I)
Now, let us assume that A=k\left| A \right| = k where k is non zero constant.
Therefore, from equation (I), we can write A(adjA)=kIA\left( {adjA} \right) = kI (II)
Now, let us take determinant on both the side of equation (II), we get,
A(adjA)=kI\left| {A\left( {adjA} \right)} \right| = \left| {kI} \right| (III)
Now, first we solve the L.H.S part of the equation (III).
For this, we use the property of determinant AB=AB\left| {AB} \right| = \left| A \right|\left| B \right| .
Therefore, L.H.S of equation (III) is
A(adjA)=AadjA\left| {A\left( {adjA} \right)} \right| = \left| A \right|\left| {adjA} \right|
A(adjA)=kadjA\left| {A\left( {adjA} \right)} \right| = k\left| {adjA} \right| (A=k)\left( {\because \left| A \right| = k} \right) (IV)
Now, we will solve the R.H.S part of equation (III).
For this, we will use another property of determinant i.e. kA=knA\left| {kA} \right| = {k^n}A .
Therefore, R.H.S part of equation (III) is kI=knI\left| {kI} \right| = {k^n}I .
Since, we know that the determinant of the identity matrix is 1.
Therefore, now R.H.S part of equation (III) is kI=kn(1)=kn\left| {kI} \right| = {k^n}\left( 1 \right) = {k^n} . (V)
Now, from equation (III), (Iv), and (v), we can write kadjA=knk\left| {adjA} \right| = {k^n} .
Now, when we simplify the above equation, we get,
adjA=knk\left| {adjA} \right| = \dfrac{{{k^n}}}{k}
adjA=kn1\left| {adjA} \right| = {k^{n - 1}}
adjA=An1\left| {adjA} \right| = {\left| A \right|^{n - 1}} (A=k)\left( {\because \left| A \right| = k} \right)
Hence option C is correct .
Note: Some properties of determinant:
1. AT=A\left| {{A^T}} \right| = \left| A \right|
2. AB=AB\left| {AB} \right| = \left| A \right|\left| B \right|
3. A1=1A\left| {{A^{ - 1}}} \right| = \dfrac{1}{A}
4. kA=knA\left| {kA} \right| = {k^n}\left| A \right| , where n is an order of matrices.
5. A=1×A=(1)n×A\left| { - A} \right| = \left| { - 1 \times A} \right| = \left( { - 1} \right)n \times \left| A \right| .