Solveeit Logo

Question

Mathematics Question on Vectors

If aa is a unit vector, then a×i^2+a×j^2+a×k^2=| a \times \hat{ i }|^{2}+| a \times \hat{ j }|^{2}+| a \times \hat{ k }|^{2}=

A

2

B

4

C

1

D

0

Answer

2

Explanation

Solution

We have,
a×i^2+a×j^2+a×k^2| a \times \hat{ i }|^{2}+| a \times \hat{ j }|^{2}+| a \times \hat{ k }|^{2}
(ai^sinα)2+(aj^sinβ)2+(ak^sinγ)2(| a ||\hat{ i }| \,\sin \,\alpha)^{2}+(| a ||\hat{ j }| \,\sin \,\beta)^{2}+(| a ||\hat{ k }| \,\sin \,\gamma)^{2}
=sin2α+sin2β+sin2γ[a=i^=j^=k^=1]=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \,\gamma \,\,[\because| a |=|\hat{ i }|=|\hat{ j }|=|\hat{ k }|=1]
=1cos2α+1cos2β+1cos2γ=1-\cos ^{2} \alpha+1-\cos ^{2} \beta+1-\cos ^{2} \gamma
=3(cos2α+cos2β+cos2γ)=3-\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)
=31=2[cos2α+cos2β+cos2γ=1]=3-1=2 \left[\because \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\right]