Solveeit Logo

Question

Question: If \[a\] is a unit vector satisfying \[a\times r=b\], \[a\cdot r=c\] and \[a\cdot b=0\]. Then dete...

If aa is a unit vector satisfying a×r=ba\times r=b, ar=ca\cdot r=c and ab=0a\cdot b=0. Then
determine the value of rr .
(a) cb+(a×b)cb+\left( a\times b \right)
(b) ca+(a×b)ca+\left( a\times b \right)
(c) cb(a×b)cb-\left( a\times b \right)
(d) ca(a×b)ca-\left( a\times b \right)

Explanation

Solution

In this question, we will first evaluate the value of a×(a×r)a\times \left( a\times r \right) given that a×r=ba\times r=b. Then using the triple cross product formula a×(b×c)=(ac)b(ab)c\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}\cdot \overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}\cdot \overrightarrow{b} \right)\overrightarrow{c} for vectors a\overrightarrow{a}, b\overrightarrow{b} and
c\overrightarrow{c}, we will then find the value of a×(a×r)a\times \left( a\times r \right). Then using the fact that aa is a unit vector we have a2=1{{a}^{2}}=1. We will then substitute the value a2=1{{a}^{2}}=1 and ar=ca\cdot r=c in the expression for a×(a×r)a\times \left( a\times r \right) to get the value of rr.

Complete step-by-step answer:
We are given a unit vector aa.
a2=1\Rightarrow {{a}^{2}}=1
Since we have a×r=ba\times r=b, thus on evaluating the value of a×(a×r)a\times \left( a\times r \right) by
substituting a×r=ba\times r=b we get
a×(a×r)=a×ba\times \left( a\times r \right)=a\times b
Now we know that for vectors a\overrightarrow{a}, b\overrightarrow{b} and
c\overrightarrow{c}, then the triple cross product of vectors a\overrightarrow{a},
b\overrightarrow{b} and c\overrightarrow{c}is given by

\overrightarrow{a}\cdot \overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}\cdot \overrightarrow{b} \right)\overrightarrow{c}$$ Using the above formula for the triple cross product in $$a\times \left( a\times r \right)$$, we get that $$a\times \left( a\times r \right)=\left( a\cdot r \right)a-\left( a\cdot a \right)r$$ Now, using $$a\cdot r=c$$ in the above equation we have $$\begin{aligned} & a\times \left( a\times r \right)=\left( a\cdot r \right)a-\left( a\cdot a \right)r \\\ & =ca-{{a}^{2}}r \end{aligned}$$ Since $$a\times \left( a\times r \right)=a\times b$$ , thus we have $$ca-{{a}^{2}}r=a\times b...........(1)$$ Also $${{a}^{2}}=1$$where $$a$$is a unit vector. Therefore substituting the value $${{a}^{2}}=1$$ in equation (1) , we get $$ca-r=a\times b$$ We will now calculate the value of $$r$$ by rearranging the terms of the above equation. By taking vector $$r$$ to the right and taking $$a\times b$$ to the left side of the equation we get $$ca-\left( a\times b \right)=r$$ Therefore the value of $$r$$ is given by $$ca-\left( a\times b \right)$$ **So, the correct answer is “Option (d)”.** **Note:** In this problem, we have also use the definition of cross product and dot product to get the desired value of $$r$$. We have $$a\times b=ab\sin \theta $$ where $$\theta $$ is the angle between $$a$$ and $$b$$. Also $$a\cdot b=ab\cos \theta $$. Then using the fact that $$a\cdot b=0$$, we say that vectors $$a$$ and $$b$$ are orthogonal to each other. That is the vectors $$a$$ and $$b$$ are perpendicular to each other.