Question
Question: If A is a symmetric matrix and B is a skew symmetric matrix such that \(A + B = \left[ {\begin{array...
If A is a symmetric matrix and B is a skew symmetric matrix such that A + B = \left[ {\begin{array}{*{20}{c}}
2&3 \\\
5&{ - 1}
\end{array}} \right], then AB is equal to?
A. \left[ {\begin{array}{*{20}{c}}
{ - 4}&2 \\\
1&4
\end{array}} \right]
B. \left[ {\begin{array}{*{20}{c}}
{ - 4}&{ - 2} \\\
{ - 1}&4
\end{array}} \right]
C. \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\\
{ - 1}&{ - 4}
\end{array}} \right]
D. \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\\
1&{ - 4}
\end{array}} \right]
Solution
To solve this question, we have to remember that a matrix A is a symmetric matrix if A′=A and A is skew symmetric matrix if A′=−A, where A′ is the transpose of matrix A. If A=[aij]m×n, then A′=[aji]n×m
Complete step-by-step answer :
Given that,
A is a symmetric matrix, i.e. A′=A ,
And,
B is a skew symmetric matrix, i.e. B′=−B
Such that,
A + B = \left[ {\begin{array}{*{20}{c}}
2&3 \\\
5&{ - 1}
\end{array}} \right] ………. (i)
We have to find AB.
So,
We know that,
(A+B)′=A′+B′ ……….. (ii)
We have,
Transposing equation (i), we will get
{\left( {A + B} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
2&5 \\\
3&{ - 1}
\end{array}} \right]
Using equation (ii), we can write this as: