Solveeit Logo

Question

Question: If A is a square matrix such that \(A\left( AdjA \right)=\left( \begin{matrix} 4 & 0 & 0 \\\ ...

If A is a square matrix such that A(AdjA)=(400 040 004 )A\left( AdjA \right)=\left( \begin{matrix} 4 & 0 & 0 \\\ 0 & 4 & 0 \\\ 0 & 0 & 4 \\\ \end{matrix} \right) then det(AdjA)=\det \left( AdjA \right)=
A. 4
B. 16
C. 64
D. 256

Explanation

Solution

Hint: We will be using the concepts of matrices and determinants to solve the problem. We will be using the properties of matrices that AIn=A(adj(A))\left| A \right|{{I}_{n}}=A\left( adj\left( A \right) \right) to relate the data given to us with what we have to find then we will further take its discriminant and substitute the value to find the final answer.
Complete step-by-step answer:
Now, we have been given that A(AdjA)=(400 040 004 )A\left( AdjA \right)=\left( \begin{matrix} 4 & 0 & 0 \\\ 0 & 4 & 0 \\\ 0 & 0 & 4 \\\ \end{matrix} \right)
Now, we know that the inverse of a square matrix A is given by;
A1=adj(A)A.................(1){{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}.................\left( 1 \right)
Where A\left| A \right| is determinant of A now multiplying by A in (1) we have;
A A1=A(adjA)AA\ {{A}^{-1}}=\dfrac{A\left( adjA \right)}{\left| A \right|}
Now, we know that A A1=InA\ {{A}^{-1}}={{I}_{n}} , where n is the order of the matrix.
Therefore,
AIn=A(adj(A))\left| A \right|{{I}_{n}}=A\left( adj\left( A \right) \right)
Now, we will take determinant of both sides,
AIn=A(adjA) An=A adjA \begin{aligned} & \left| \left| A \right|{{I}_{n}} \right|=\left| A\left( adjA \right) \right| \\\ & {{\left| A \right|}^{n}}=\left| A\ adjA \right| \\\ \end{aligned}
Now, we know that;
A(adjA)=(400 040 004 )A\left( adjA \right)=\left( \begin{matrix} 4 & 0 & 0 \\\ 0 & 4 & 0 \\\ 0 & 0 & 4 \\\ \end{matrix} \right)
So, we have;
A adjA=4(4×40) =4(4×4) =4×4×4 =64 \begin{aligned} & \left| A\ adjA \right|=4\left( 4\times 4-0 \right) \\\ & =4\left( 4\times 4 \right) \\\ & =4\times 4\times 4 \\\ & =64 \\\ \end{aligned}
So, we have;
An=64{{\left| A \right|}^{n}}=64
Where n is the order of matrix which is equal to 3 therefore;
A3=64 A=4..............(2) \begin{aligned} & {{\left| A \right|}^{3}}=64 \\\ & \left| A \right|=4..............\left( 2 \right) \\\ \end{aligned}
Now, we know that det(adjA)\det \left( adjA \right) is An1{{\left| A \right|}^{n-1}}.
det(Adj(A))=An1\det \left( Adj\left( A \right) \right)={{\left| A \right|}^{n-1}}
Where n is the order of the square matrix and equal to 3.
det(AdjA)=A31 =A2 \begin{aligned} & \det \left( AdjA \right)={{\left| A \right|}^{3-1}} \\\ & ={{\left| A \right|}^{2}} \\\ \end{aligned}
Now, we know from (2) that A=4\left| A \right|=4 therefore,
det(Adj A)=42 =16 \begin{aligned} & \det \left( Adj\ A \right)={{4}^{2}} \\\ & =16 \\\ \end{aligned}
Therefore the correct option is (B).

Note: To solve these type of question one must remember few identities for square matrix like;
adj A=An1 AIn=An \begin{aligned} & \left| adj\ A \right|={{\left| A \right|}^{n-1}} \\\ & \left| \left| A \right|{{I}_{n}} \right|={{\left| A \right|}^{n}} \\\ \end{aligned}