Solveeit Logo

Question

Mathematics Question on Matrices

If A is a square matrix such that A2=IA^2 = I, then (AI)3+(A+I)37A(A - I)^3 + (A + I)^3 - 7A is equal to

A

AA

B

IAI - A

C

I+AI + A

D

3A3A

Answer

AA

Explanation

Solution

A2=IA^2 = I Now, (AI)3+(A+I)37A(A - I)^3 + (A + I)^3 - 7A =A3I33A2I+3AI2+A3+I3+3A2I+3AI27A= A^3 - I^3 - 3A^2I + 3AI^2 + A^3 + I^3 + 3A^2I + 3AI^2 - 7A =2A3+6AI27A=2A2A+6AI7A= 2A^3 + 6AI^2 - 7A = 2A^2A + 6AI - 7A =2IA+6A7A=2A+6A7A=A[A2=I]= 2IA +6A - 7A = 2A + 6A - 7A = A \left[\because A^{2}=I\right]