Solveeit Logo

Question

Question: If A is a square matrix of order n x n and k is a scalar, then adj(kA) is equal to...

If A is a square matrix of order n x n and k is a scalar, then adj(kA) is equal to

A

k adj A

B

knk^n adj A

C

kn1k^{n-1} adj A

D

kn+1k^{n+1} adj A

Answer

kn1 adj Ak^{n-1} \text{ adj A}

Explanation

Solution

Let A be a square matrix of order n x n and k be a scalar. We want to find adj(kA).

We know that for any square matrix M, M(adj M)=(adj M)M=det(M)InM (\text{adj } M) = (\text{adj } M) M = \text{det}(M) I_n, where InI_n is the identity matrix of order n.

Let M = kA. Then (kA)adj(kA)=det(kA)In(kA) \text{adj}(kA) = \text{det}(kA) I_n.

We also know the property that for a scalar k and an n x n matrix A, det(kA)=kndet(A)\text{det}(kA) = k^n \text{det}(A).

Substituting this into the equation, we get:

(kA)adj(kA)=kndet(A)In(kA) \text{adj}(kA) = k^n \text{det}(A) I_n.

We also know that A(adj A)=det(A)InA (\text{adj } A) = \text{det}(A) I_n.

If A is invertible, then det(A)0\text{det}(A) \neq 0, and A1=1det(A)adj AA^{-1} = \frac{1}{\text{det(A)}} \text{adj A}.

Also, if k0k \neq 0, then kA is invertible if and only if A is invertible.

If k0k \neq 0 and A is invertible, then (kA)1=k1A1(kA)^{-1} = k^{-1} A^{-1}.

Multiply the equation (kA)adj(kA)=kndet(A)In(kA) \text{adj}(kA) = k^n \text{det}(A) I_n by (kA)1(kA)^{-1} from the left:

(kA)1(kA)adj(kA)=(kA)1kndet(A)In(kA)^{-1} (kA) \text{adj(kA)} = (kA)^{-1} k^n \text{det(A)} I_n

Inadj(kA)=(k1A1)kndet(A)I_n \text{adj(kA)} = (k^{-1} A^{-1}) k^n \text{det(A)}

adj(kA)=kn1A1det(A)\text{adj(kA)} = k^{n-1} A^{-1} \text{det(A)}

Since A1det(A)=adj AA^{-1} \text{det(A)} = \text{adj A}, we have:

adj(kA)=kn1adj A\text{adj(kA)} = k^{n-1} \text{adj A}.