Solveeit Logo

Question

Question: If A is a square matrix of order 5 and \(9{{A}^{-1}}=4{{A}^{T}}\) . Then \[\left| adj(adj\left( adj\...

If A is a square matrix of order 5 and 9A1=4AT9{{A}^{-1}}=4{{A}^{T}} . Then adj(adj(adj A)\left| adj(adj\left( adj\text{ }A \right) \right| contains how many digits.
Here A1,AT and adj(A){{A}^{-1}},{{A}^{T}}\text{ and }adj(A) means Inverse of A, Transpose of A and adjugate matrix of A respectively. (log3=0.477,log2=0.303\log 3=0.477,\log 2=0.303)
a) 56 digits b) 60 digits c) 58 digits d) 53 digits \begin{aligned} & \text{a) 56 digits} \\\ & \text{b) 60 digits} \\\ & \text{c) 58 digits} \\\ & \text{d) 53 digits} \\\ \end{aligned}

Explanation

Solution

First we will try to solve the given equation by taking the determinant. We can use the properties AT=A|{{A}^{T}}|=|A| and A1=1A|{{A}^{-1}}|=\dfrac{1}{|A|} to find the value of determinant of A.

Complete step by step answer:
Then we know the relation between determinant of adjugate A and determinant of A which is adj(A)=An1|adj(A)|=|A{{|}^{n-1}} using this relation 3 times successively we get adj(adj(adj A)\left| adj(adj\left( adj\text{ }A \right) \right| and hence we can find the number of digits in adj(adj(adj A)\left| adj(adj\left( adj\text{ }A \right) \right| is greatest integer of adj(adj(adj A)\left| adj(adj\left( adj\text{ }A \right) \right|+ 1
Now we are given with the equation 9A1=4AT9{{A}^{-1}}=4{{A}^{T}} and the order of Matrix A is 5.
Taking determinant on both sides we get 9A1=4AT|9{{A}^{-1}}|=|4{{A}^{T}}|
Now we will use the property of determinant which says if A is a matrix of order n then
pA=pnA|pA|={{p}^{n}}|A|. Hence we get
95A1=45AT{{9}^{5}}|{{A}^{-1}}|={{4}^{5}}|{{A}^{T}}|.
Now we also know that AT=A|{{A}^{T}}|=|A| and A1=1A|{{A}^{-1}}|=\dfrac{1}{|A|} .
Using this properties we get 951A=45A{{9}^{5}}\dfrac{1}{|A|}={{4}^{5}}|A|
Now we will rearrange the terms by taking 45{{4}^{5}} to LHS and 1A\dfrac{1}{|A|} to RHS. So we get
9545=A2 A2=(94)5 A=(94)52 A=(32)5 \begin{aligned} & \dfrac{{{9}^{5}}}{{{4}^{5}}}=|A{{|}^{2}} \\\ & \Rightarrow |A{{|}^{2}}={{\left( \dfrac{9}{4} \right)}^{5}} \\\ & \Rightarrow |A|={{\left( \dfrac{9}{4} \right)}^{\dfrac{5}{2}}} \\\ & \Rightarrow |A|={{\left( \dfrac{3}{2} \right)}^{5}} \\\ \end{aligned}
Now we have A=(32)5.....................(1)|A|={{\left( \dfrac{3}{2} \right)}^{5}}.....................(1)
Now we have a property of determinant which says adj(A)=An1|adj(A)|=|A{{|}^{n-1}}
Let us successively use this property

& |adjA|=|A{{|}^{5-1}}=|A{{|}^{4}} \\\ & \Rightarrow |adj(adjA)|={{(|A{{|}^{4}})}^{5-1}} \\\ & \Rightarrow |adj[adj(adjA)]|={{({{(|A{{|}^{4}})}^{4}})}^{5-1}} \\\ & \Rightarrow |adj[adj(adjA)]|={{({{(|A{{|}^{4}})}^{4}})}^{4}}=|A{{|}^{{{4}^{3}}}} \\\ \end{aligned}$$ Now we substitute the value of |A| from equation (1) so we get $$|adj[adj(adjA)]|={{\left( {{\left( \dfrac{3}{2} \right)}^{5}} \right)}^{{{4}^{3}}}}$$ Now we know that ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ using this property we get $$\Rightarrow |adj[adj(adjA)]|={{\left( \dfrac{3}{2} \right)}^{5\times {{4}^{3}}}}={{\left( \dfrac{3}{2} \right)}^{320}}$$ Now number of digits in $$\left| adj(adj\left( adj\text{ }A \right) \right|$$ $$=\left[ \log {{\left( \dfrac{3}{2} \right)}^{320}} \right]+1$$ Where [] is greatest integer function $$=\left[ \log \dfrac{{{3}^{320}}}{{{2}^{320}}} \right]+1$$ Now we apply the property of log which is $\log \dfrac{a}{b}=\log a-\log b$ $$=\left[ \log {{3}^{320}}-\log {{2}^{320}} \right]+1$$ Now we also know that $\log {{a}^{b}}=b\log a$ $$=\left[ 320\log 3-320\log 2 \right]+1$$ We are given the values of log3 and log2, we will substitute those values in the equation to get $$=\left[ 320(0.477)-320(0.303) \right]+1$$ Now 320 × 0.477 = 152.64 and 320 × 0.303 = 96.96. $$\begin{aligned} & =\left[ (152.64)-(96.96) \right]+1 \\\ & =[55.6]+1 \\\ & =55+1 \\\ & =56 \\\ \end{aligned}$$ **Hence the number of digits in $$\left| adj(adj\left( adj\text{ }A \right) \right|$$ is equal to 56** **Note:** The characteristic of the logarithm of a positive number is positive and it is one less than the number of digits in the number. Hence we use find number of digits in $$\left| adj(adj\left( adj\text{ }A \right) \right|$$ by taking greatest integer of log of $$\left| adj(adj\left( adj\text{ }A \right) \right|$$ and adding 1.