Solveeit Logo

Question

Question: If A is a square matrix of order 3, then \(\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}...

If A is a square matrix of order 3, then Adj(AdjA2) = \left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}
A. A2{{\text{A}}^{\text{2}}}
B. A4{{\text{A}}^{\text{4}}}
C. A8{{\text{A}}^{\text{8}}}
D. A16{{\text{A}}^{{\text{16}}}}

Explanation

Solution

Here we’ll use some properties of determinants and adjoint of square matrices like AdjM = Mn - 1\left| {{\text{AdjM}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{{\text{n - 1}}}}and Ma = Ma\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}, first we’ll find the value of |AdjA2{{\text{A}}^{\text{2}}}| then again applying the same property will find the value ofAdj(AdjA2)\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|to get the required answer.

Complete step by step answer:

Given data: A is a square matrix of order 3
As we all know that, if M is a square matrix of order n
Then, AdjM = Mn - 1\left| {{\text{AdjM}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{{\text{n - 1}}}}
Similarly, we can also say that
Adj(AdjM) = (Mn - 1)2\left| {{\text{Adj(AdjM)}}} \right|{\text{ = (}}{\left| {\text{M}} \right|^{{\text{n - 1}}}}{{\text{)}}^{\text{2}}}
Now, A is a matrix of order 3, so can conclude that

Adj(AdjA) = (A3 - 1)2  = (A2)2  = A4  \left| {{\text{Adj(AdjA)}}} \right|{\text{ = (}}{\left| {\text{A}} \right|^{{\text{3 - 1}}}}{{\text{)}}^{\text{2}}} \\\ {\text{ = (}}{\left| {\text{A}} \right|^{\text{2}}}{{\text{)}}^{\text{2}}} \\\ {\text{ = }}{\left| {\text{A}} \right|^{\text{4}}} \\\

Therefore it is applicable for A2{{\text{A}}^{\text{2}}} as it will also be a square matrix, concluding that

Adj(AdjA2) = (A23 - 1)2  = (A22)2  = A24  \left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = (}}{\left| {{{\text{A}}^{\text{2}}}} \right|^{{\text{3 - 1}}}}{{\text{)}}^{\text{2}}} \\\ {\text{ = (}}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{2}}}{{\text{)}}^{\text{2}}} \\\ {\text{ = }}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{4}}} \\\

Since we know that for a square matrix M of order n
Ma = Ma\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}

Adj(AdjA2) = A24 A8  \left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{4}}} \\\ {\left| {\text{A}} \right|^{\text{8}}} \\\

Therefore, option (C)A8{{\text{A}}^{\text{8}}} is the correct option

Note: An alternative solution for this question can be
Since we know that for a square matrix M of order n
Ma = Ma\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}
Now, since A is also a square matrix
A2 = A2\left| {{{\text{A}}^{\text{2}}}} \right|{\text{ = }}{\left| {\text{A}} \right|^{\text{2}}}
Now, applying the same rule as the above solution

(AdjA2) = (A2)3 - 1  = A4 \left| {{\text{(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left( {{{\left| {\text{A}} \right|}^{\text{2}}}} \right)^{{\text{3 - 1}}}} \\\ {\text{ = }}{\left| {\text{A}} \right|^{\text{4}}} \\\

Again using the same formula,

Adj(AdjA2) = (A4)3 - 1  = A8  \left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left( {{{\left| {\text{A}} \right|}^{\text{4}}}} \right)^{{\text{3 - 1}}}} \\\ {\text{ = }}{\left| {\text{A}} \right|^{\text{8}}} \\\