Solveeit Logo

Question

Mathematics Question on Invertible Matrices

If AA is a square matrix of order 3 , then | adj (adjA2)\left(\operatorname{adj} A^{2}\right) \mid is equal to

A

A2|A |^{2}

B

A4|A|^{4}

C

A8|A|^{8}

D

A16|A|^{16}

Answer

A8|A|^{8}

Explanation

Solution

We know that,
adj(adjA)=A(n1)2|\operatorname{adj}(\operatorname{adj} A)| =|A|^{(n-1)^{2}}
adj(adjA2)=A2(31)2\left|\operatorname{adj}\left(\operatorname{adj} A^{2}\right)\right| =\left|A^{2}\right|^{(3-1)^{2}}
=A22[n=3]=\left|A^{2}\right|^{2} \,\,[\because n=3]
=A24=A8=\left|A^{2}\right|^{4}=|A|^{8}