Solveeit Logo

Question

Question: If $A$ is a square matrix of order 3 such that $|A|=5$ then $|(adjA^{-1})^{-1}|$ is...

If AA is a square matrix of order 3 such that A=5|A|=5 then (adjA1)1|(adjA^{-1})^{-1}| is

A

9

B

4

C

6

D

25

Answer

25

Explanation

Solution

Let AA be a square matrix of order n=3n=3. Given A=5|A|=5. We need to find the value of (adjA1)1|(adjA^{-1})^{-1}|.

We will use the following properties of matrices and determinants:

  1. For any invertible matrix XX, (X1)1=X(X^{-1})^{-1} = X.

  2. For an invertible matrix XX, adj(X1)=(adjX)1adj(X^{-1}) = (adj X)^{-1}.

  3. For a square matrix XX of order nn, adjX=Xn1|adj X| = |X|^{n-1}.

Now, let's simplify the given expression step-by-step:

  • Step 1: Apply the property adj(X1)=(adjX)1adj(X^{-1}) = (adj X)^{-1} with X=AX=A. So, adj(A1)=(adjA)1adj(A^{-1}) = (adj A)^{-1}. The expression becomes (adj(A1))1=((adjA)1)1|(adj(A^{-1}))^{-1}| = |((adj A)^{-1})^{-1}|.

  • Step 2: Apply the property (Y1)1=Y(Y^{-1})^{-1} = Y with Y=adjAY = adj A. So, ((adjA)1)1=adjA((adj A)^{-1})^{-1} = adj A. The expression simplifies to adjA|adj A|.

  • Step 3: Apply the property adjA=An1|adj A| = |A|^{n-1}. Given that the order of matrix AA is n=3n=3. So, adjA=A31=A2|adj A| = |A|^{3-1} = |A|^2.

  • Step 4: Substitute the given value of A|A|. Given A=5|A|=5. Therefore, adjA=(5)2=25|adj A| = (5)^2 = 25.

Thus, (adjA1)1=25|(adjA^{-1})^{-1}| = 25.