Solveeit Logo

Question

Question: If A is a square matrix of order 3 such that \(A\left( adj\left( 3A \right) \right)=27I\) , then \(\...

If A is a square matrix of order 3 such that A(adj(3A))=27IA\left( adj\left( 3A \right) \right)=27I , then adj(adj(adjA))adj(adjA)\dfrac{\left| adj\left( adj\left( adjA \right) \right) \right|}{\left| adj\left( adjA \right) \right|} is
A. 9
B. 81
C. 729
D. 243

Explanation

Solution

In mathematics, a matrix is a rectangular array or tables of numbers, symbols are arranged in rows and columns. In the above question we have a square matrix which means it has the same rows and same column. A square matrix is a matrix with the same numbers or rows and columns. The order of the square matrix is equal to the number of rows (number of columns).

Complete step-by-step solution:
Now, in the above question we have given that A(adj(3a))=27IA\left( adj\left( 3a \right) \right)=27I, here adjadj means adjoint of square matrix. Let A=[aij]A=\left[ a_ij \right] be a square matrix of order n. The adjoint of a matrix A is the transpose of the cofactor matrix of A.
The formula to find the adjA=AA1adjA=\left| A \right|{{A}^{-1}} and we also know that adj(kA)=kn1adjAadj\left( kA \right)={{k}^{n-1}}adjA
Now we will use these above formula in the given A(adj(3A))=27IA\left( adj\left( 3A \right) \right)=27I, then we get
adj(3A)=331adjA\Rightarrow adj\left( 3A \right)={{3}^{3-1}}adjA
adj(3A)=9adjA\Rightarrow adj\left( 3A \right)=9adjA
Now we will replace adj(3A)adj\left( 3A \right) by 9adjA9adjA , then we get
A(9adjA)=27I\Rightarrow A\left( 9adjA \right)=27I
Now divide the both side of the equation by 99 we get,
AadjA=3I\Rightarrow A adjA=3I
Now we know we can write adjA=AA1adjA=\left| A \right|{{A}^{-1}} then the above equation becomes
AAA1=3I\Rightarrow A\left| A \right|{{A}^{-1}}=3I
We know that AA1=IA{{A}^{-1}}=I putting this in above equation we get,
AI=3I A=3 \begin{aligned} & \Rightarrow \left| A \right|I=3I \\\ & \Rightarrow \left| A \right|=3 \\\ \end{aligned}
We have to solve adj(adj(adjA))adj(adjA)\dfrac{\left| adj\left( adj\left( adjA \right) \right) \right|}{\left| adj\left( adjA \right) \right|} by using the value of the A=3\left| A \right|=3 , then we get
adj(adj(adjA))adj(adjA)=A(n1)3A(n1)2 adj(adj(adjA))adj(adjA)=An1 adj(adj(adjA))adj(adjA)=A31=A2 \begin{aligned} & \Rightarrow \dfrac{\left| adj\left( adj\left( adjA \right) \right) \right|}{\left| adj\left( adjA \right) \right|}=\dfrac{{{\left| A \right|}^{{{\left( n-1 \right)}^{3}}}}}{{{\left| A \right|}^{{{\left( n-1 \right)}^{2}}}}} \\\ & \Rightarrow \dfrac{\left| adj\left( adj\left( adjA \right) \right) \right|}{\left| adj\left( adjA \right) \right|}={{\left| A \right|}^{n-1}} \\\ & \Rightarrow \dfrac{\left| adj\left( adj\left( adjA \right) \right) \right|}{\left| adj\left( adjA \right) \right|}={{\left| A \right|}^{3-1}}={{\left| A \right|}^{2}} \\\ \end{aligned}
Now putting the value of A=3\left| A \right|=3 then we get
adj(adj(adjA))adj(adjA)=32=9\Rightarrow \dfrac{\left| adj\left( adj\left( adjA \right) \right) \right|}{\left| adj\left( adjA \right) \right|}={{3}^{2}}=9
Hence option A is correct which is 99.

Note: Matrices are used in computer graphics, such that they are used to manipulate 3D models and project them onto a 2-dimensional screen. Matrix is also used in economics to describe systems of economic relationships.