Solveeit Logo

Question

Mathematics Question on Matrices

If AA is a square matrix of order 3 such that det(A)=3\det(A) = 3 and det(adj(4adj(3adj(3adj((2A)1)))))=2m3n,\det(\text{adj}(-4 \, \text{adj}(-3 \, \text{adj}(3 \, \text{adj}((2A)^{-1}))))) = 2^{m^3 n}, then m+2nm + 2n is equal to:

A

3

B

2

C

4

D

6

Answer

4

Explanation

Solution

Given A=3|A| = 3, we start with:
adj(4adj3adj(3adj(2A1)))\left| \text{adj} \left( -4 \, \text{adj} - 3 \, \text{adj} \left( 3 \, \text{adj} \left( 2A^{-1} \right) \right) \right) \right|
Step 1: Simplify the innermost expression:
=4adj(3adj(3adj(2A1)))2= \left| -4 \, \text{adj} \left( -3 \, \text{adj} \left( 3 \, \text{adj} \left( 2A^{-1} \right) \right) \right) \right|^2
Step 2: Expand the outer term:
=45adj(3adj(3adj(2A1)))2= 4^5 \, \left| \text{adj} \left( -3 \, \text{adj} \left( 3 \, \text{adj} \left( 2A^{-1} \right) \right) \right) \right|^2
Step 3: Replace the outermost adj with its expression:
=2123123adj(2A1)8= 2^{12} \cdot 3^{12} \cdot \left| 3 \, \text{adj} \left( 2A^{-1} \right) \right|^8
Step 4: Simplify the term inside the absolute value:
=21231238adj(2A1)8= 2^{12} \cdot 3^{12} \cdot 3^8 \cdot \left| \text{adj} \left( 2A^{-1} \right) \right|^8
Step 5: Use the property of adjugates:
=2123202A116= 2^{12} \cdot 3^{20} \cdot \left| 2A^{-1} \right|^{16}
Step 6: Replace 2A116\left| 2A^{-1} \right|^{16} with its determinant form:
=21232012A16= 2^{12} \cdot 3^{20} \cdot \frac{1}{|2A|^{16}}
Step 7: Substitute 2A16=216A16|2A|^{16} = 2^{16} \cdot |A|^{16}:
=2123201248A16= 2^{12} \cdot 3^{20} \cdot \frac{1}{2^{48} \cdot |A|^{16}}
Step 8: Replace A=3|A| = 3:
=2123201248316= 2^{12} \cdot 3^{20} \cdot \frac{1}{2^{48} \cdot 3^{16}}
Step 9: Simplify powers of 2 and 3:
=212248320316=123634= \frac{2^{12}}{2^{48}} \cdot \frac{3^{20}}{3^{16}} = \frac{1}{2^{36}} \cdot 3^4
Step 10: Further simplify:
=23634= 2^{-36} \cdot 3^4
Step 11: Combine the terms:
m=36,n=20m = -36, \quad n = 20
Step 12: Final result:
m+2n=4m + 2n = 4