Question
Mathematics Question on Matrices
If A is a square matrix of order 3 such that det(A)=3 and det(adj(−4adj(−3adj(3adj((2A)−1)))))=2m3n, then m+2n is equal to:
3
2
4
6
4
Solution
Given ∣A∣=3, we start with:
adj(−4adj−3adj(3adj(2A−1)))
Step 1: Simplify the innermost expression:
=−4adj(−3adj(3adj(2A−1)))2
Step 2: Expand the outer term:
=45adj(−3adj(3adj(2A−1)))2
Step 3: Replace the outermost adj with its expression:
=212⋅312⋅3adj(2A−1)8
Step 4: Simplify the term inside the absolute value:
=212⋅312⋅38⋅adj(2A−1)8
Step 5: Use the property of adjugates:
=212⋅320⋅2A−116
Step 6: Replace 2A−116 with its determinant form:
=212⋅320⋅∣2A∣161
Step 7: Substitute ∣2A∣16=216⋅∣A∣16:
=212⋅320⋅248⋅∣A∣161
Step 8: Replace ∣A∣=3:
=212⋅320⋅248⋅3161
Step 9: Simplify powers of 2 and 3:
=248212⋅316320=2361⋅34
Step 10: Further simplify:
=2−36⋅34
Step 11: Combine the terms:
m=−36,n=20
Step 12: Final result:
m+2n=4