Solveeit Logo

Question

Mathematics Question on Determinants

If AA is a square matrix of order 33 and if det(A)=3,\det \,(A)=3, then det[adjadj(adjA)]\det \,[adj\,\,\\{adj\,(adj\,A)\\}] is equal to

A

812{{81}^{2}}

B

8181

C

729729

D

2727

Answer

8181

Explanation

Solution

Given, det (A)=3(A)=3 and n=3n=3
(order of A) Now, adj
(adjA)=An2A(adj\,A)=|A{{|}^{n-2}}A
=(3)32A={{(3)}^{3-2}}\,A
=3A=3\,A
adjadj(adjA)=adj(3A)adj\,\,\\{adj\,\,(adjA)\\}=adj\,\,(3A)
=3n1adjA={{3}^{n-1}}\,adj\,A
=9adjA=9\,adj\,A adjadj(adjA)=9adjA|adj\,\\{adj\,\,(adjA)\\}\,=|9\,adj\,A|
=9adjA=9|adj\,A|
=9An1=9|A{{|}^{n-1}}
=9(3)31=9{{(3)}^{3-1}}
=9×9=81=9\times 9=81